
Programming for Evolutionary Biologists

John P. Huelsenbeck

Department of Integrative Biology
University of California, Berkeley

May 27, 2023

Contents

1 Introduction to Programming 1

1.1 On becoming a card-carrying computational biologist 1

1.2 What is programming? . 1

1.3 Choosing a programming language . 2

1.4 Goals . 3

I Part 1. Introductory Concepts and Applications 5

2 IDE Misery 7

2.1 What is an IDE? . 7

2.2 Getting started with Xcode . 8

2.3 Getting started with CLion . 10

2.4 Getting started with Eclipse . 10

3 Hello World: the World’s Most Boring Program 11

3.1 Hello World: Boring, but informative . 11

3.2 main is a function . 11

3.3 Every C++, and C, program starts with main . 12

3.4 #include statements expose the built in functions of the language 12

3.5 Please explain std::cout << "Hello, World!" << std::endl 14

3.6 Functions take arguments and return values . 15

4 Variables are Fun! 19

4.1 The basic variable types . 19

4.2 Variables take up space . 21

4.3 Variables in computers have limits . 22

4.4 You can use a variable to hold a memory address . 24

4.5 Dereferencing pointers . 26

4.6 Arrays . 27

5 Conjunction Function (what’s your function?)1 33

5.1 Making your own functions . 33

5.2 You can pass variables to a function by value or by reference 34

5.3 Variables have a scope . 39

i

ii CONTENTS

6 A Pseudorandom Number Class 43

6.1 Into the deep end of the pool . 43

6.2 Making your first class . 44

6.3 Why do we split the class into .hpp and .cpp files? 45

6.4 Instantiating a class . 47

6.5 Implementing the uniformRv function . 53

6.6 Implementing the exponentialRv function . 55

7 Markov chain Monte Carlo 57

7.1 Some theory . 57

7.2 MCMC . 61

7.3 Coding MCMC for coin tossing . 62

7.4 Summarizing MCMC output . 70

8 Representing Trees in Computer Memory 75

8.1 The basic idea . 75

8.2 The Node class . 76

8.3 The Tree class . 79

8.4 Traversing trees in pre- or postorder . 86

9 Simulating the Birth-Death Process of Cladogenesis 91

9.1 A stochastic model of cladogenesis . 91

9.2 Coding the birth-death process . 92

9.3 Printing the tree as a Newick string . 104

10 Simulating Sequence Evolution on a Tree 111

10.1 Assumptions of phylogenetic methods . 111

10.1.1 Transition probabilities . 113

10.1.2 Stationary distribution . 116

10.2 Four equivalent ways to simulate DNA sequences on a tree 119

10.2.1 Method 1 . 121

10.2.2 Method 2 . 122

10.2.3 Method 3 . 122

10.2.4 Method 4 . 123

10.3 A C++ simulator . 123

10.3.1 Modifying the Tree class . 124

10.3.2 Creating the Alignment class . 133

10.3.3 Using PAUP* to analyze the data . 149

10.3.4 How well do alternative methods work? . 149

II Part 2. Estimating Phylogeny Using Bayesian Inference 151

11 Introduction to Bayesian Estimation of Phylogeny 153

11.1 The Basics of Bayesian phylogenetics . 153

11.2 Alignment, X . 154

CONTENTS 1

11.3 Tree Topology, τ . 155
11.4 Likelihood Function, f(X|τi) . 156
11.5 Prior, f(τi) . 157

Appendices

Appendix A Random Variable Class 163

Appendix B MCMC Coin Tossing Program 167

Appendix C A Simple Tree 171

Appendix D Birth-Death Process of Cladogenesis Code 177

Appendix E Site Probabilities 185

Bibliography 187
; ;x

2 CONTENTS

Chapter 1

Introduction to Programming

1.1 On becoming a card-carrying computational biologist

As an evolutionary biologist interested in programming, you are joining a group with a proud
history that extends back to the beginnings of the computer era. It is largely unacknowledged that
the field of computational biology was founded by biologists, and not just by any flavor of biologist,
but by evolutionary biologists. In fact, Sir Ronald A. Fisher — yes, that R.A. Fisher who was a
founder of modern population genetics as well as an architect of modern frequentist statistics — is
likely the first person to have used a computer to solve a problem in biology. Fisher (1950) used an
EDSAC computer in Cambridge to compute the expected allele frequencies in a cline. Just a little
more than a decade later, in 1963, his former postdoc and student, Luca Cavalli-Sforza and Anthony
Edwards, respectively, wrote some of the earliest programs to estimate phylogeny, executing the
programs on an Italian-made Olivetti Elea 6001 computer (Edwards, 2009). The next generation
of evolutionary computational biologists came of age, scientifically at least, in the 1970s and 1980s
and included such luminaries as Joe Felsenstein, Elizabeth Thompson, Steve Farris, Masatoshi
Nei, David Swofford, and the brothers, Wayne and David Maddison. They addressed all sorts of
problems in evolutionary biology, but mainly concentrated in population genetics and phylogeny
estimation which posed problems that could not be solved analytically, but were amenable to
numerical solution using a computer. Although these researchers did not necessarily all get along,
it was at this time that a community consisting of evolutionary biologists who took a computational
approach in their research developed. As a rule, this group of researchers was generous in sharing
their knowledge with the next generation, which includes too many biologists to list here. This
author, in fact, learned many of the tricks of the trade for dealing with trees in computer memory
from David Swofford This book is my attempt to pay it forward by passing some of the tricks of
the trade on to you, a member of the next generation of evolutionary computational biologists. My
hope is that my means of paying it forward, in the form of this book, will be as instructive to you
as David Swofford’s tutelage was for me.

1.2 What is programming?

Programing is the act of writing instructions for a computer to perform. The instructions are written
in a language, called a programming language of which there are many to choose from. Typically,

1

2 CHAPTER 1. INTRODUCTION TO PROGRAMMING

the instructions are written on a plain text file which is then read by a computer program called a
‘compiler’ which compiles the code, turning your instructions into a form that can be read directly
by the computer. The coding language is a necessity as it is readable by ordinary humans whereas
the compiled code, which is gobbled up by the computer and executed instruction-by-instruction, is
much more difficult to comprehend. The coding language also helps ensure portability of the ideas
expressed in your code to various computer platforms. Machine-readable code — the output of a
compiler — is machine specific, so the executable code for one computer and operating system will
not necessarily work on another. The code, however, can be ported from computer to computer
and compiled for each.

1.3 Choosing a programming language

Programming is difficult. Turning a concept into an algorithm that is implemented in code is not an
easy task, for one. But, for the beginner, there are several hurdles that must be cleared before the
interesting problem of algorithm development can even be tackled. You need to master, or begin
the process of mastering, the programs that allow you to program. I will discuss these programs,
called Integrated Developer Environments (IDEs), in the next chapter. The first decision to make,
however, is which programming language to use. All programming languages have similarities, and
as you become more experienced, you will notice these similarities and realize that learning two
different computer languages, such as C++ and Fortran, is much easier than learning two spoken
languages such as Spanish and German. But, these similarities won’t become apparent until you
have one language, at least, under your belt. Which language should you invest your precious time
in learning?

Popular computer languages include Java, Python, JavaScript, C, C++, C#, PHP, Perl, Swift,
R, Rust, and Ruby, to name a few. More experienced programmers can be helpful in guiding you
in choosing a first language, but you should beware. Programmers often have very strong opinions
about the merits (and demerits) of various languages. In this book I chose to use C++ to illustrate
ideas. C++ is not a bad choice for a first language to learn. You could do worse. It is widely used
and powerful.

Importantly, C++ is a compiled language. “What is a compiled language?,” you ask. A
compiled language is one that must be run through a compiler, which produces instructions specific
to the target machine. Some languages, such as the popular Python, are interpreted languages.
The instructions for an interpreted language are not directly executed by the target machine, but
rather are read and executed by another program, predictably called the ‘Interpreter.’ Interpreted
languages are often easier to run and use, but typically do not run as fast as compiled languages.

A C++ programmer can also take advantage of the code written by others to solve various
problems, an advantage C++ shares with other languages. This code is referred to as a library.
Sometimes, they are precompiled. The important point is this: you can integrate the library into
your program and use the functionality of the library to solve your own problems. This saves you
a lot of time, allowing you to concentrate on the aspects of your problem that are truly unique.
Moreover, libraries can often be of very high quality. The routines you take advantage of in a library
are likely better-written than anything you (or I) could write. An example of a C++ library often
used by scientists is the Boost Library.

As you can see, there are good reasons to learn C++. That said, I imagine you are thinking,
“Fine, fine, but I really want to learn Python. All my friends use it and there are some very cool

1.4. GOALS 3

libraries, such as numpy, that I want to use.” All I can say to that is there is nothing stopping you
from learning python. (Just be prepared to adhere to the ridiculous language requirement involving
spaces and tabs.) C++ has several superpowers, such as its ability to manipulate bits and iterate
using pointers to basic types. Reach for your cape! You’re going to become a C++ programming
superhero!

1.4 Goals

This book is not meant to provide you with an in depth review of C++ and programming. Rather,
my goal is to get you started with programming in evolutionary biology. The exercises presented
in each chapter build on each other. The idea is that by working through the exercises, you will
not only learn a lot about programming, but better understand many of the algorithms that are
used by evolutionary biologists.

As I mentioned, above, programming is hard. You should not expect to understand every
concept on the first go. Be persistent! Don’t give up! If you approach programming with a positive
attitude, you’ll find yourself enjoying the process.

Good luck and happy programming!

4 CHAPTER 1. INTRODUCTION TO PROGRAMMING

Part I

Part 1. Introductory Concepts and
Applications

5

Chapter 2

IDE Misery

2.1 What is an IDE?

When I was a graduate student, my advisor bought me a powerful (for the time) and exceedingly
expensive Sun SPARC workstation. It was the first computer I had used that ran a Unix operating
system. For the first two weeks, until I figured out how to install and operate the compiler, this
workstation was nothing more than an expensive time piece. The process of working out how
to install and use the compiler was, for me, a frustrating experience. However, my experience
was not unique; the first, and worst, experience for a beginning programmer is learning how to
actually compile and run a program for the first time. Fortunately, it is much easier to get started
programming today. Why? Integrated Developer Environments (IDEs).

Remember that writing, compiling, and running a program involve the following steps:

00000000 cf fa ed fe 07 00 00 01 03 00 00 80 02 00 00 00

00000010 11 00 00 00 30 06 00 00 85 80 21 00 00 00 00 00

00000020 19 00 00 00 48 00 00 00 5f 5f 50 41 47 45 5a 45

00000030 52 4f 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000040 00 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00

00000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000060 00 00 00 00 00 00 00 00 19 00 00 00 c8 02 00 00

00000070 5f 5f 54 45 58 54 00 00 00 00 00 00 00 00 00 00

Text file with

code
Compiler Executable

Entering the code into a text file can be accomplished using any text editor, even Microsoft Word,
as long as the file is saved as a plain text file. And, compiling the code can be performed directly, by
running the compiler from the command line. IDEs, however, simplify both tasks by wrapping the
code generation and compilation into one program. The text editor for an IDE can be customized
to suit your style, or the style of your programming team. Colors can be used to indicate different
aspects of the code, such as control statements, variables, and comments. The IDE also manages
the source code files, of which there may be many, that constitute the program. The compiler is
run from the IDE. Typically, the settings for the compiler can be set from the IDE. Finally, IDEs
have built in debuggers, which can help you track down errors in your code.

7

8 CHAPTER 2. IDE MISERY

There are many IDEs that you can use. In this book, I will assume that you are using Xcode,
if you are using a computer running the MacOS. If you are using a computer running the Windows
operating system, I would recommend installing CLion, Eclipse, or Visual Studio.

2.2 Getting started with Xcode

XCode is an IDE developed by Apple and given away for free, which is a pretty good deal in
my opinion. You can download XCode through the App Store application on your Mac. Search
for XCode in the App Store search field, then click on the ‘Download’ button. XCode is a large
program, so be patient while the program downloads to your computer.

Launch XCode after you download it. Select New > Project from the File Menu. You will
see the following window:

Select Command Line Tool and click on Next. This leads to the following window:

2.2. GETTING STARTED WITH XCODE 9

Name the project. Here, I cleverly named the project Project01. You can name your project
whatever you like. However, I will be referring to this program as ‘Project01’ throughout this
book, so you can simplify your life by following my lead here. You might consider entering your
name instead of my name in the Organization Name field. Similarly, enter something sensible for
Organization Identifier. Most importantly, make certain that C++ is selected as the Language.
Then select Next to continue to the next (and, thankfully, last) window that allows you to save
your project to a specific location on your computer:

Do not choose to Create Git repository on my Mac. I’ll explain source code repositories, such
as Git, in a later chapter. You should see the following after you save your project:

Congratulations! You have just ‘written’ your first computer program. How? XCode fills in a

10 CHAPTER 2. IDE MISERY

bit of starter code for you. If you want to, you can compile and run this code by clicking on the
‘play’ button () in the top-left corner of the window.

Play with the toggles, indicated by the red ellipses until you get the window to look like the one,
above. The window, above, contains just the information you need to write the code (the portion
in the top window) and see the results of the program running (the portion in the lower window).

2.3 Getting started with CLion

2.4 Getting started with Eclipse

Chapter 3

Hello World: the World’s Most
Boring Program

3.1 Hello World: Boring, but informative

If your IDE has not already done so, enter the following text in the main.cpp file for the first
program you set up in your IDE, called ‘Program01’:

‘Hello world!’ Program

#include <iostream>

int main(int argc, char* argv[]) {

std::cout << "Hello, World!" << std::endl;

return 0;

}

The code you have entered implements the well-known ‘Hello, World’ program. Almost every
introductory programming book starts with some variant of this program. What does the program
do? It simply prints the phrase, “Hello, World!” to the standard output on your computer. (In
Xcode, the output is directed to a window in the lower portion of the viewer. In Eclipse, the
standard output is directed to ...) Clearly, this is a very boring program. You would think we
could do better. (We can.) That said, the Hello World program illustrates a few points.

3.2 main is a function

Mathematicians use functions all of the time. For example, consider the function called f(x):

f(x) = x2

11

12 CHAPTER 3. HELLO WORLD: THE WORLD’S MOST BORING PROGRAM

This function takes as input the variable x and outputs the square of x, or x2. Programmers also
make extensive use of functions. In fact, the Hello World program already has a function, called
main. The outline of the main function is:

int main(int argc, char* argv[]) {

}

The main function takes as input arguments two variables which are listed in the parentheses (int
argc, char* argv[], which will be discussed in more detail later). The main function also returns
a value, the type of which is an integer (called int here). (Note, we will discuss variables extensively
in the next chapter.) The body of the function is the space between the two curly brackets.

How would we define a function that squares a value, like the simple example function we gave
above in which f(x) = x2? The following would accomplish this:

double squareFunction(double x) {

return x * x;

}

The function is named squareFunction. The function takes as an argument the value double x.
What does this mean? The word double refers to the variable type. We won’t go into great detail
about double variables here, but for now it suffices to say that double variables can hold real
numbers, such as 3.14. The function also returns a value, which is the square of the value that is
passed into the function as an argument. (Here, x * x is equivalent to x× x.)

3.3 Every C++, and C, program starts with main

You now have a basic idea of how functions are defined in C++. The pattern is

<return type> <function name>(<input variable(s)>) {

}

with the body of the function being the commands that are typed between the curly brackets.

Every C++ program begins execution at a function called main. Every C++ program must
contain one, and only one, main function. If you ever happen to be examining someone else’s code,
look for the main function. Everything starts there.

3.4 #include statements expose the built in functions of the lan-
guage

Change line 1 of the program by typing two backslashes in front of the statement, #include

<iostream>. The line should look like

3.4. #INCLUDE STATEMENTS EXPOSE THE BUILT IN FUNCTIONS OF THE LANGUAGE13

Comment out the header:

//#include <iostream>

The double slash denotes comments in your code. Everything after the // on that line is not
code that is read by the compiler, but only there to help you and others understand the code. So,
the // in front of the #include ‘comments out’ that line of code. What happened when you did
this? In Xcode, I get the following error pop up in the IDE, next to that line: ‘Use of undeclared

identifier ‘std’.’ What is the include statement doing that is so important that leaving it out
breaks the program?

Any command that starts with the pound sign, #, is called a ‘compiler directive.’ The compiler
directive is read by the preprocessor of the compiler, which reads the code before compiling, re-
solving any of the directives. The #include <iostream> directive tells the compiler to look for a
file called iostream and include that file in the project.

On my computer, iostream is a physical file located in the Xcode program bundle. To under-
stand what is going on here, I’m going to back up a few steps and give you a more general view
of a programming language. Imagine the following scenario: two different companies are writing
C++ compilers. Company 1 decides that they really don’t like how C++ uses the word double

when referring to a variable that will hold a real number. Sensibly enough, they decide that in
their compiler, whenever you want to declare a variable that will hold a real number, you will type

real x;

which would declare a variable called x to be of type real. Meanwhile, the programming team from
Company 2, which happens to be German, decides like Company 1 that double is not a sensible
name for a real number. But, being German, they decide that in their compiler program variables
that hold real numbers will be declared

zahl x;

Both companies have made seemingly sensible decisions. What could go wrong?
It turns out that a lot could go wrong if compiler coders made arbitrary decisions like the ones

I described. Imagine that you wrote a computer program in C++ that is read by, and compiled on,
Company 1’s compiler. You give your code to your friend, who happens to have bought Company
2’s compiler. Your friend would not be able to compile your code without the hassle of changing
all of the ‘reals’ to ‘zahls.’ Yikes! Or, I should say, “Heiliger Strohsack!”

To prevent such chaos, writers of compilers adhere to a standardized version of the C++ lan-
guage. The language standards, of course, are maintained by a committee, in this case the Inter-
national Organization for Standardization (ISO). A C++ compiler must closely adhere to the ISO
guidelines in order to be ISO compliant. Variables that store real numbers must be called double,
not real or zahl. And, certain built-in functions must not only be implemented, but must be
implemented in certain files that can be included to expose that functionality. The line that begins
std::cout outputs text to the console. std::cout is implemented in the iostream file, which
must be included if you use std::cout in your code.

14 CHAPTER 3. HELLO WORLD: THE WORLD’S MOST BORING PROGRAM

Several standards for the C++ language have been released by ISO. The most recent is C++20,
which was released in December 2020.

Throughout this book, you will see examples of new functions that require different files to
be included (e.g., if you want to take the natural log of a number, using the log function, you
need to include the cmath file). Why didn’t the C++ standard just include all of the functions
automatically? Why include functionality piecemeal? There are several reasons. For one, by
including only those files necessary for the bit of code you are writing, compiling that code is faster.
More generally, good programmers follow the principle of including only the minimum necessary
to compile code. When you garden, you only bring the tool(s) necessary to prune your shrubs, or
weed. You don’t bring the entire contents of your gardening shed. Similarly, in programming, we
only include the tools necessary for the portion of code expressed in the file.

You will see two examples of #include directives:

#include <file>

#include "file"

The first is used to expose the built-in functionality of the C++ language. Files that you will often
include are iostream, iomanip, cmath, time, and fstream, among others. The second include,
using the quotation marks, is used to include files from your program project. You will see that
you do not write all of the code in a single text file. Rather, the code that constitutes your program
is scattered among files. A large program, such as RevBayes (Höhna et al., 2016), can include
thousands of files!

3.5 Please explain std::cout << "Hello, World!" << std::endl

The main body of the ‘Hello, World’ program does two things: print the text “Hello, World!” and
then return the number 0 to the operating system. Output is handled by cout, which stands for
‘console out.’ The command, std::cout opens an output stream, directed to the console. A stream
is an abstraction used for input and output in C++.

C++ uses the abstraction of a ‘stream’ to control input and output to a device. The input and
output can be from the console or to a file or to some object. A stream is nothing but a sequence of
characters. One can insert characters into the stream with the << operator. One can also extract
characters from the stream with the >> operator.

The command, std::cout opens a stream to the console. The next command, << "Hello,

World!" inserts into the stream the string, ‘Hello, World!” A string is a series of characters, that
can include spaces. A string is defined by the characters between the quotation marks. The last
command, << std::endl inserts into the stream an end-of-line character. (If you are familiar
with those ancient devices called typewriters, you can think of the end-of-line character as being a
carriage return.)

A lot more could be said about streams. They provide the C++ language with a flexible way
to output data and to take in data that is device independent (i.e., the C++ interface remains the
same regardless of where the stream comes from or goes to). We’ll see more of streams in later
chapters.

3.6. FUNCTIONS TAKE ARGUMENTS AND RETURN VALUES 15

3.6 Functions take arguments and return values

Earlier, I mentioned that main is a function and that the general pattern of functions is:

<return type> <function name>(<input variable(s)>) {

}

Let’s delve more deeply into what the main function is taking in as arguments and what it is
returning.

The main function takes as arguments two variables, int argc and char* argv[]. Where do
these arguments come from? In this case, argc and argv are supplied by the operating system
when the program is executed. int argc is a variable called ‘argc’ which can hold an integer
value. The other variable that is provided by the operating system, ‘char* argv[],’ is a bit more
mysterious. This is an array of pointers to strings. I realize that probably made no sense, but here
is another try: char* argv[] is a vector of memory addresses, each of which indicates the starting
address for a string.

What is contained in int argc and char* argv[]? int argc holds the number of strings
contained in argv. Rewrite your main function to look like this:

Modify code so we can see the arguments:

int main(int argc, char* argv[]) {

std::cout << "argc = " << argc << std::endl;

for (int i=0; i<argc; i++)

{

std::cout << "argv[" << i << "] = " << argv[i] << std::endl;

}

return 0;

}

When I run the above program, I get the following output:

argc = 1

argv[0] = /Users/johnh/Project01/DerivedData/Project01/Build/Products/Debug/Project01

Program ended with exit code: 0

The operating system is passing to the program, through the main function, information on how
the program was called. In this case, there is one argument and that argument is the path to the
executable.

On my computer, a Macintosh, I opened the terminal app and typed the path to the executable,
which is everything in the line, above, except the executable name:

16 CHAPTER 3. HELLO WORLD: THE WORLD’S MOST BORING PROGRAM

cd /Users/johnh/Project01/DerivedData/Project01/Build/Products/Debug/

If I type the unix command, ls, I see the list of files in the Debug directory: ‘Project01.’ The
executable can be run using the following command,

Type the command:

./Project01

which gives the following output:

argc = 1

argv[0] = ./Project01

Now, let’s have some fun. I am going to type the following the next time I execute the program,

Type the command:

./Project01 David Swofford loves flowers, especially PAUPpies

This line produces the following output on my computer:

argc = 7

argv[0] = ./Project01

argv[1] = David

argv[2] = Swofford

argv[3] = loves

argv[4] = flowers,

argv[5] = especially

argv[6] = PAUPpies

Note that the operating system broke up the sentence by words, separated by blank space(s).
Again, the first string that is passed to the main function is the path to the executable name. The
other strings, however, are the individual words that followed the executable name.

You may have had experience with programs that run from the command line. Genomics
analysis often involves the use of many command-line programs, perhaps stitched together using a
language such as python. For example, ClustalW is a widely-used program that aligns nucleotide
or amino acid sequences. The user manual gives the following example of how to call ClustalW
from the command line:

clustalw2 -infile=my_data -type=protein -matrix=pam -outfile=my_aln -outorder=input

3.6. FUNCTIONS TAKE ARGUMENTS AND RETURN VALUES 17

Note that the word clustalw2 is the executable name. Simply typing this word executes the
program. All of the words after clustalw2, however, are arguments that are passed into Clustal’s
main function. The programmers for Clustal read the number of arguments (argc) and the strings
argv to set the program’s state. Command line arguments passed into main using int argc and
char* argv[] are a convenient, if not particularly user-friendly, way to specify things such as input
and output files, etc.

Finally, the program returns to the operating system the number 0. It does this using the return
statement, return 0.

This concludes our discussion of the ‘Hello World’ program. Who would have thought that such
a simple program would provide so much fodder for discussion?

18 CHAPTER 3. HELLO WORLD: THE WORLD’S MOST BORING PROGRAM

Chapter 4

Variables are Fun!

4.1 The basic variable types

Modify the main function for your first project, Project01 so that it reads:

Adding a variable:

int main(int argc, char* argv[]) {

int x = 3;

std::cout << "x = " << x << std::endl;

return 0;

}

This simple program declares a variable named ‘x’ and initializes its value to x = 3. This all
occurs on one line, int x = 3. The next line prints the value of x. The output of the program
should look like:

x = 3

Program ended with exit code: 0

The single line in which we declared and initialized the variable x could have been done in two
lines, instead:

int x; // declare variable called x

x = 3; // set the value of the variable x to 3

Most programmers, when declaring a variable, will also initialize it to some value. Normally, if I
were declaring a variable like x, I would initialize its value to zero, int x = 0, so that I could rely
on it being zero. Some compilers, when you declare a variable without initializing it (e.g., int x),

19

20 CHAPTER 4. VARIABLES ARE FUN!

initialize the value to zero. Other compilers, however, do not do this and the value of the variable
will reflect the pattern of bits that happen to be at that memory address. Declaring and initializing
the variable ensures that it has a value that you can rely on. Note that I added comments to the
two lines, above; the words after the // are the comment and are not read by the compiler.

In C++, when you declare a variable, you also indicate the variable type. Here, we are declaring
the variable x to be of type int. In C++, and other languages too, int declares a variable that
can hold integers. (Remember, integers are the numbers . . . ,−3,−2,−1, 0, 1, 2, 3,)

What if you wanted to store and manipulate a real-valued number in computer memory? You
can do this with the float or double variable types. Modify the main program, again, to read:

Adding a variable to hold a real number:

int main(int argc, char* argv[]) {

int x = 3;

std::cout << "x = " << x << std::endl;

double y = 3.14;

std::cout << "y = " << y << std::endl;

return 0;

}

When I run this program, I get the following output:

x = 3

y = 3.14

Program ended with exit code: 0

The other standard variable types are summarized in the following table:

Variable Type Example

int Integers -1, -100, 0, 314, 10001
unsigned int Natural Numbers 0, 1, 2, . . .
float Real Numbers -4.23, 10.01e+4, 10203.0001
double Real Numbers Same as with floats
char Characters c, a, B, Z
bool Boolean true, false

There are a few other variable types that you might come across, but the table summarizes the
main ones you will likely ever use.

4.2. VARIABLES TAKE UP SPACE 21

4.2 Variables take up space

When you declare a variable, such as int x = 0, the operating system sets aside enough space on
your computer’s memory to represent the variable. Interestingly, C++ allows you to see how much
space is set aside and even where the variable resides in memory. Rewrite main in Project01 to
read:

Explore a variable:

int main(int argc, char* argv[]) {

int x = 0;

std::cout << "x's value = " << x << std::endl;

std::cout << "x's address = " << &x << std::endl;

std::cout << "x's size = " << sizeof(int) << std::endl;

return 0;

}

When I run this program, I get the following output:

x's value = 0

x's address = 0x7ffeefbff57c

x's size = 4

Program ended with exit code: 0

The first line of code, int x = 0, simply declares and initializes an integer variable called x. The
next line of code should also make sense to you; it simply prints out the value of x, which because
you initialized the variable at the same time that you declared it, is predictably zero. It’s on the
next line of code which prints out the memory address of x, std::cout << "x’s address = " <<

&x << std::endl, where things get interesting. You can get the memory address of a variable by
putting the ampersand symbol, ‘&,’ in front of the variable’s name. So, &x represents the memory
address of the variable x. You can see that when I ran the program on my computer, the memory
address is reported to be 0x7ffeefbff57c.

The memory address deserves explanation. First of all, the memory on your computer is arrayed
in bytes, each of which has an address. The address is either a 32 bit or 64 bit number. On my
computer, the addresses are 64 bits and output as hexadecimal numbers. The number representing
the memory address for x, 0x7ffeefbff57c, is in hexadecimal format1 It’s unlikely that when you

1Converting between number bases is not too difficult. Remember that a base-10 number is in the following
format: . . . × 104 + × 103 + × 102 + × 101 + × 100 + × 10−1 . . . where the blanks are filled with the
digits 0, 1, 2, 3, 4, 5, 6, 7, 8, or, 9 depending on the number that is represented. For example, the number 1066 would
be 1× 103 + 0× 102 + 6× 101 + 6× 100. A binary (base two) number works in a similar fashion, but the format is
. . . ×24+ ×23+ ×22+ ×21+ ×20+ ×2−1 . . ., with the blanks filled in with the digits 0 or 1. A hexadecimal

22 CHAPTER 4. VARIABLES ARE FUN!

ran the program that your computer put the value x in the same place in memory as when I ran
the program on my computer.

The last line of the modified program prints the size of the variable, x. You can see that an
integer takes up four bytes on my computer. In fact, the first byte will reside at the address that was
printed out (0x7ffeefbff57c). The next three bytes will be adjacent to the first, at the locations
0x7ffeefbff57d, 0x7ffeefbff57e, and 0x7ffeefbff57f.

Of course, the memory address of a variable can change each time the program is run. The
amount of space that is set aside for each variable type, however, is constant. On my computer,
the standard variable types take up the following amount of space:

Variable Number Bytes

int 4
unsigned int 4
float 4
double 8
char 1
bool 1

4.3 Variables in computers have limits

We now know that when we declare a variable to be of type int, that the compiler sets aside four
bytes of space somewhere on your memory card. What is the largest and smallest value that can
be stored in computer memory as an int?

Each byte of memory consists of eight ‘bits,’ each of which has two states, on (1) or off (0). The
binary representation of the first ten positive integers is

Number Binary Representation

0 00000000000000000000000000000000

1 00000000000000000000000000000001

2 00000000000000000000000000000010

3 00000000000000000000000000000011

4 00000000000000000000000000000100

5 00000000000000000000000000000101

6 00000000000000000000000000000110

7 00000000000000000000000000000111

8 00000000000000000000000000001000

9 00000000000000000000000000001001

10 00000000000000000000000000001010

Note that most of the bits, the leading ones, are not being used for our int variable. In fact, if we
knew that the largest number we wanted to hold was 10, we could get away with one byte (8 bits),
and still have four bits to spare. There is a variable type called ‘short int’ which only takes up
two bytes of memory. In this case, in which we know that the maximum size of the integer we want

number is in base 16. The format for the numbers is . . . ×164+ ×163+ ×162+ ×161+ ×160+ ×16−1 . . .,
with the sixteen digits being 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,B,C,D,E, and F , the letters standing for 10, 11, 12, 13, 14,
and 15 (in base-10).

4.3. VARIABLES IN COMPUTERS HAVE LIMITS 23

to hold is 10 (in base-10), we could use a short int instead, thereby saving two byes of memory.
If we were programming in the 1970s, we might go ahead and do just this. In the 1970s, a good
computer had only thousands of bytes of memory. Today, we have billions of bytes of memory to
play with. Most programmers do not worry about saving a few bytes. Rather, they worry more
about places in the code that a lot of memory is allocated (where a lot of memory might be millions
of bytes, or megabytes, are allocated).

Imagine we had only two digits to represent a base-10 number. What is the largest value that
can be represented with two digits? The answer: 99 (or 102 − 1). Similarly, the largest binary
number that can be represented with 32 bits is 11111111111111111111111111111111, or 232 − 1.
For the int variable type, however, one of the 32 bits is used to indicate whether the number
is positive or negative. Therefore, the largest value that can be stored using an int variable is
1031 − 1 = 2147483647 whereas the smallest value is −2147483648. The actual story is a bit more
complicated than I just made out, but you see the point: if we wanted to store a number larger
than about 2.1 billion, we are going to run into problems. In fact, if we attempt to do so, we will
get an overflow error from the computer. (The opposite problem — attempting to hold the value
of a number that is too small — is called an ‘underflow error.’)

Note that you can get information on the limits of numerical representation from functions
defined in the limits include file.

Similarly, we cannot represent the real numbers with complete accuracy. Try the following
experiment; rewrite your project code so that it reads:

Explore the limits:

#include <iomanip>

#include <iostream>

int main(int argc, char* argv[]) {

float x = 0.1;

double y = 0.1;

std::cout << std::fixed << std::setprecision(50) << "x = " << x << std::endl;

std::cout << std::fixed << std::setprecision(50) << "y = " << y << std::endl;

return 0;

}

The output should look like this:

x = 0.10000000149011611938476562500000000000000000000000

24 CHAPTER 4. VARIABLES ARE FUN!

y = 0.10000000000000000555111512312578270211815834045410

Program ended with exit code: 0

Neither number is exactly equal to 0.1, though both are quite close to that value. The reason
is straight-forward: computers cannot represent every real number with complete precision, but
rather approximates any particular number as well as it can. The representation of 0.1 is better
when we use a double variable than when we use the float type. This makes sense because the
internal representation of the real number for the double type uses twice as many bytes as the
float type.

You should always be concerned about numerical accuracy when doing computations in evolu-
tionary biology. Some of the more obscure output from many programs, such as reporting the log
of a probability, are done to avoid underflow.

4.4 You can use a variable to hold a memory address

As I pointed out earlier, we can get the memory address of a variable by putting an ampersand
in front of the variable in computer code. This seems to be a neat trick, but otherwise useless.
After all, why should we care about the location of the variable in memory? This is especially true
because we, as the programmer, do not even control where the variable is to reside.

It turns out that knowing the memory address is quite important. If we know where a variable
resides in memory, we can manipulate that variable. Moreover, other parts of your code, such as
the functions you code, also have a memory address when the program is executed. If we know
where a function resides in computer memory, we can also manipulate it.

What if we want to remember the memory address of a variable? We can make another variable
that will hold the memory address. Such a variable is called a ‘pointer’ in the computer science
lingo. Rewrite your little program so that the main function now reads:

Explore pointers:

#include <iostream>

int main(int argc, char* argv[]) {

int x = 0;

int* xPtr = &x;

std::cout << "x = " << x << std::endl;

std::cout << "&x = " << &x << std::endl;

std::cout << "xPtr = " << xPtr << std::endl;

std::cout << "&xPtr = " << &xPtr << std::endl;

std::cout << "int size = " << sizeof(int) << std::endl;

4.4. YOU CAN USE A VARIABLE TO HOLD A MEMORY ADDRESS 25

std::cout << "int* size = " << sizeof(int*) << std::endl;

return 0;

}

When I run this program on my computer, I get the following output:

x = 0

&x = 0x7ffeefbff56c

xPtr = 0x7ffeefbff56c

&xPtr = 0x7ffeefbff560

int size = 4

int* size = 8

Program ended with exit code: 0

We declare and initialize two variables in the code. The first should look familiar to you by now.
We simply declare a variable called x to be of type int and set its value to zero (int x = 0). The
second line is new. Here, we declare a pointer variable of type int*. The asterisk indicates that
the variable is a pointer. In fact, it is a variable that can hold the memory address of an int. We
also initialize the pointer variable to be equal to the memory address of x.

Confusingly, different programmers will put the asterisk, which indicates that the variable will
hold a memory address, in different places. Compilers will accept the following as equivalent:

int* xPtr = &x;

int * xPtr = &x;

int *xPtr = &x;

It seems the asterisk can attach itself to the variable type (here int), to the variable name, or even
stay in between the two like a baseball player caught in a pickle. I follow the convention of having
the asterisk cling to the variable type.

Two of the lines display the same memory address:

&x = 0x7ffeefbff56c

xPtr = 0x7ffeefbff56c

This makes perfect sense because we set the value of int* to be the memory address of x. The
next line simply shows that the variable named xPtr also has a memory address. After all, it is a
variable! You will note that the pointer variable takes up eight bytes of memory.

What if, for some reason, we wanted to remember the memory address of the variable xPtr?
We could do this by declaring another variable to hold the memory address. The big question here
is what would the variable type be? Clearly it is a pointer, but it is a pointer to a variable that is
itself a pointer. The answer is to append another asterisk to the variable type, resulting in:

26 CHAPTER 4. VARIABLES ARE FUN!

int** anotherDamnPointer = &xPtr;

The variable, anotherDamnPointer, can also hold a memory address, but only for variables of type
int*. You should feel confident enough to modify the program to see that a variable of type int**
also takes up eight bytes of memory. All pointer variables take up the same amount of memory
(four or eight bytes, depending on the computer) regardless of the type of variable it holds the
memory address of.

4.5 Dereferencing pointers

I mentioned that if you know the address of a variable, that you can manipulate it. You can do
this by ‘dereferencing’ the pointer. Here’s an example using a re-written main function:

Explore dereferencing:

#include <iostream>

int main(int argc, char* argv[]) {

int x = 0;

int* xPtr = &x;

std::cout << "x = " << x << std::endl;

*xPtr = 3;

std::cout << "x = " << x << std::endl;

return 0;

}

When I run this program, I get the following output:

x = 0

x = 3

Program ended with exit code: 0

Note that I didn’t change the value of x directly by simply typing x = 3. Rather, I changed
its value indirectly using *xPtr = 3. Essentially, the program changes the value at the memory
address stored in the pointer variable, xPtr.

4.6. ARRAYS 27

4.6 Arrays

Often, a problem can best be solved by using a vector of variables. As an example, in phylogenetics
we use vectors of double variables to hold conditional probabilities at different points on a tree.

Vectors, called ‘arrays’ in C++ and other languages, can be declared by appending square
brackets with the number of variables in the array to the end of the variable name:

int x[10]; // declares an array of 10 ints

int* xPtr[10]; // declares an array of 10 int pointers

double y[1000]; // declares an array of 1000 double variables

The value for each element can be accessed, again, using the square brackets. Implement the
following code in your program:

Explore arrays:

#include <iostream>

int main(int argc, char* argv[]) {

int x[100];

for (int i=0; i<100; i++)

x[i] = i;

for (int i=0; i<100; i++)

std::cout << "x[" << i <<"] = " << x[i] << std::endl;

return 0;

}

This little program does three things. First, we declare a vector of 100 int variables, called x.
Second, we initialize each of the 100 variables to be its position in the vector. We do this using
a loop. This is the second time you have seen a loop in this book. Here, we use the for loop.
(There are also do and while loops, but for loops are probably the most frequently used in C++.)
The for loop has three conditions, separated by semicolons. The first, int i=0, declares a counter
variable named i and initializes its value to zero. The second, i<100, indicates the condition for
the variable i. As long as the condition is met, we will continue through the loop. Here, we will
continue through the loop while the variable i is less than 100. The third part of the for loop
increments the value of i each time we pass through the loop. The value is incremented at the
end of the loop. The statement i++ is short-hand for i = i + 1. Programmers are inherently lazy
people. The ++ operator was added to the language to save programmers a few key strokes. The

28 CHAPTER 4. VARIABLES ARE FUN!

values of i that will be visited in the for loop are 0, 1, 2, . . . , 99. The for loop could have been
replaced by the following 100 lines of code, which you should not type:

#include <iostream>

int main(int argc, char* argv[]) {

int x[100];

x[0] = 0;

x[1] = 1;

x[2] = 2;

x[3] = 3;

x[4] = 4;

// 90 lines of similar code!

x[95] = 95;

x[96] = 96;

x[97] = 97;

x[98] = 98;

x[99] = 99;

for (int i=0; i<100; i++)

std::cout << "x[" << i <<"] = " << x[i] << std::endl;

return 0;

}

Mercifully, I did not write out the full 100 lines of code that would be necessary to accomplish what
the two lines of code in the for loop accomplished. You can see that loops are really useful!

After initialization, the third and final part of the little C++ program prints out each value of
the vector, x. It does this using another for loop.

The values of the array are adjacent to one another in computer memory. You can see this if
you modify the line in the code in which the values are printed to read:

Array variables are adjacent to one another:

#include <iostream>

int main(int argc, char* argv[]) {

int x[100];

4.6. ARRAYS 29

for (int i=0; i<100; i++)

x[i] = i;

for (int i=0; i<100; i++)

std::cout << "x[" << i <<"] = " << x[i] << " (" << &x[i] << ")" << std::endl;

return 0;

}

When I run the program, the first ten lines of output read:

x[0] = 0 (0x7ffeefbff420)

x[1] = 1 (0x7ffeefbff424)

x[2] = 2 (0x7ffeefbff428)

x[3] = 3 (0x7ffeefbff42c)

x[4] = 4 (0x7ffeefbff430)

x[5] = 5 (0x7ffeefbff434)

x[6] = 6 (0x7ffeefbff438)

x[7] = 7 (0x7ffeefbff43c)

x[8] = 8 (0x7ffeefbff440)

x[9] = 9 (0x7ffeefbff444)

x[10] = 10 (0x7ffeefbff448)

Note that each int variable in the array is four bytes away from the previous variable.

The above example assumes that you know the size of the vector before compiling the program.
Here, for whatever reason, we knew we would need 100 integer values in the array. What would
you do if you didn’t know the size of the array before compiling the program? Perhaps for some
input to the program, you will need 50 integer values in the vector but for other input you will
need 1000. One possible solution is to simply declare the variable to be of a sufficient size for any
possible input. For example, you could write,

int x[1000];

if you knew that the maximum size of the vector would be 1000 int variables. This is an inelegant
and inefficient solution to the problem. What if we only need 50 variables? In this case, we would
never use 950 of the variables that were set aside when the program is run. The problem is even
messier if we cannot predict how many variables we will need when the program is executed, which
is the usual case in evolutionary biology in which the size of the problems to be analyzed can vary
dramatically.

Fortunately, there is a simple solution. We dynamically allocate the memory that we will need.
Rewrite the main function to read:

30 CHAPTER 4. VARIABLES ARE FUN!

Dynamic memory allocation:

#include <iostream>

int main(int argc, char* argv[]) {

int numInts = 0;

std::cout << "How many ints: ";

std::cin >> numInts;

int* x = NULL;

if (numInts > 0)

x = new int[numInts];

else

{

std::cout << "Too few ints!" << std::endl;

exit(1);

}

for (int i=0; i<numInts; i++)

x[i] = i;

for (int i=0; i<numInts; i++)

std::cout << "x[" << i <<"] = " << x[i] << " (" << &x[i] << ")" << std::endl;

delete [] x;

return 0;

}

When I run this program, I am prompted to enter a number. I entered ‘5’ and got the following
output:

How many ints: 5

x[0] = 0 (0x10292c5a0)

x[1] = 1 (0x10292c5a4)

x[2] = 2 (0x10292c5a8)

x[3] = 3 (0x10292c5ac)

x[4] = 4 (0x10292c5b0)

Program ended with exit code: 0

The simple program does several things. First, it declares a variable called numInts and initial-

4.6. ARRAYS 31

izes its value to zero. Second, the program prints out ‘How many ints:’ to the standard console.
At this point, nothing happens until the user enters (hopefully) a number. There is no checking
that the user actually enters a number. Ideally, we would check that the entry made by the user is
valid. In any case, we proceed to declare another variable, this time an int* (int pointer) variable
and initialize its value at the same time we declare it. We initialize its value to be NULL. (In C++,
we use NULL if you want to initialize a pointer variable so that it does not contain an address.) If
the variable numInts is greater than zero, we go ahead and allocate the desired number of integer
variables using the new function. If numInts is not greater than 0, we print an error and bail out of
the program using the exit function. Finally, the program initialized the integer variables in the
array and prints the value and memory address of each. At the end of the program, we free the
memory that was allocated. We do this with the delete [] function. Every time we dynamically
allocate memory using the new function, we should remember to free that memory when it is no
longer needed using the delete function.

For fun, I ran the program again, this time entering ‘1000000’ when prompted to enter how
many int variables I wanted. The output, minus 990,000 lines, was as follows:

How many ints: 1000000

x[0] = 0 (0x103400000)

x[1] = 1 (0x103400004)

x[2] = 2 (0x103400008)

x[3] = 3 (0x10340000c)

x[4] = 4 (0x103400010)

x[5] = 5 (0x103400014)

[many lines not shown]

x[999995] = 999995 (0x1037d08ec)

x[999996] = 999996 (0x1037d08f0)

x[999997] = 999997 (0x1037d08f4)

x[999998] = 999998 (0x1037d08f8)

x[999999] = 999999 (0x1037d08fc)

Program ended with exit code: 0

32 CHAPTER 4. VARIABLES ARE FUN!

Chapter 5

Conjunction Function (what’s your function?)1

5.1 Making your own functions

Computer programs make extensive use of functions. Functions promote code reuse (why type
the same code repeatedly?) and help clarify the logic of the code. So far, we have seen only one
function, called main. Remember, every C++ program must have a function called main. In this
chapter, we will explore functions.

Modify your program to read:

Adding your own function:

#include <iostream>

// prototype the new function

int sumTwoInts(int x, int y);

int main(int argc, char* argv[]) {

int var1 = 3;

int var2 = 5;

int sum = sumTwoInts(var1, var2);

std::cout << "sum = " << sum << std::endl;

return 0;

}

int sumTwoInts(int x, int y) {

1With apologies to Schoolhouse Rock!

33

34 CHAPTER 5. CONJUNCTION FUNCTION (WHAT’S YOUR FUNCTION?)1

return x + y;

}

When run, the output should look like this:

sum = 8

Program ended with exit code: 0

This program defines a new function, called sumTwoInts. The function is implemented after the
main function, though it could have been implemented before it (the order doesn’t matter). The
function sumTwoInts is quite simple; it returns the sum of the two int variables that are passed to
it. The only mysterious portion of this new program is the statement before the main function:

// prototype the new function

int sumTwoInts(int x, int y);

This statement provides the compiler a heads up that a user-defined function, called sumTwoInts,
will be used in this file. Besides providing the compiler the name of the function, it informs the
compiler that this function will take two int variables and return an int.

Making new functions is quite easy! Now, let’s explore some important details of functions.

5.2 You can pass variables to a function by value or by reference

One of the more confusing aspects of functions is what happens to variables when they are passed
into the function. To explore functions, try the following:

Changing a variable in a function the wrong way:

#include <iostream>

// prototype the new function

void changeMyVariable(int x);

int main(int argc, char* argv[]) {

int var = 0;

std::cout << "var(before) = " << var << std::endl;

5.2. YOU CAN PASS VARIABLES TO A FUNCTION BY VALUE OR BY REFERENCE 35

changeMyVariable(var);

std::cout << "var(after) = " << var << std::endl;

return 0;

}

void changeMyVariable(int x) {

x = 3;

}

Examine this program closely. We define a new function called changeMyVariable. This
function takes as an argument an int variable and returns nothing (hence the void as the return
statement). The implementation of the changeMyVariable function is straight forward. We change
the value of x to be equal to 3.

The program prints the value of the variable declared in main twice: once before and once after
the changeMyVariable function is called. What do you predict the value of var will be after the
changeMyVariable function is called?

Many new programmers would predict that the value of var will be 3 after the changeMyVariable
function is called. After all, the variable is passed into the function and its value changed there,
right? Wrong! Run the program and see for yourself. Your output should look like:

var(before) = 0

var(after) = 0

Program ended with exit code: 0

Clearly, the value of var did not change after the changeMyVariable function was called.
The value of var does not change after the changeMyVariable function is called for the simple

reason that the value is copied to a new location when it is passed into the changeMyVariable

function. This is called passing by value. It is more clear when we print the memory address of
var in the main function and x in the changeMyVariable function:

What happened?:

#include <iostream>

// prototype the new function

void changeMyVariable(int x);

36 CHAPTER 5. CONJUNCTION FUNCTION (WHAT’S YOUR FUNCTION?)1

int main(int argc, char* argv[]) {

int var = 0;

std::cout << "var's address: " << &var << std::endl;

std::cout << "var(before) = " << var << std::endl;

changeMyVariable(var);

std::cout << "var(after) = " << var << std::endl;

return 0;

}

void changeMyVariable(int x) {

std::cout << "x's address: " << &x << std::endl;

x = 3;

}

When I run the program, I got the following output:

var's address: 0x7ffeefbff67c

var(before) = 0

x's address: 0x7ffeefbff63c

var(after) = 0

Program ended with exit code: 0

You can see from the output that var and x are different int variables residing at different memory
addresses. When the function changeMyVariable changes the value of x, it is not changing the
value of var. Rather, x’s initial value is whatever var’s value was. Check this by changing the code
to read:

What happened, with more detail?:

#include <iostream>

// prototype the new function

void changeMyVariable(int x);

5.2. YOU CAN PASS VARIABLES TO A FUNCTION BY VALUE OR BY REFERENCE 37

int main(int argc, char* argv[]) {

int var = 11;

std::cout << "var(before) = " << var << std::endl;

changeMyVariable(var);

std::cout << "var(after) = " << var << std::endl;

return 0;

}

void changeMyVariable(int x) {

std::cout << "x(before): " << x << std::endl;

x = 3;

std::cout << "x(after): " << x << std::endl;

}

The output from this modified program clarifies what is going on:

var(before) = 11

x(before): 11

x(after): 3

var(after) = 11

Program ended with exit code: 0

The variable var is initialized to 11. This value is passed to the function changeMyVariable where
the new variable, x within the scope of that function, is initialized to 11. It is then changed to the
value 3 and the program exits.

It seems that the changeMyVariable function is not acting as we intended. The idea was that
we would pass an integer variable into that function and it would change its value to 3. Instead,
we get a copy of the variable we want to change and set its value to 3.

How do we change the value of the variable var that was instantiated in the main function?
There are two ways to do this.

First, we could pass in the address of var and have the changeMyVariable change the value
indirectly, by dereferencing the pointer and changing the value at var’s address. Let’s rewrite the
program yet again:

38 CHAPTER 5. CONJUNCTION FUNCTION (WHAT’S YOUR FUNCTION?)1

Changing a variable in a function a right way with pointers:

#include <iostream>

// prototype the new function

void changeMyVariable(int* x);

int main(int argc, char* argv[]) {

int var = 0;

std::cout << "var(before) = " << var << std::endl;

changeMyVariable(&var);

std::cout << "var(after) = " << var << std::endl;

return 0;

}

void changeMyVariable(int* x) {

(*x) = 3;

}

The output for this program looks like:

var(before) = 0

var(after) = 3

Program ended with exit code: 0

Finally, we have managed to change the value of var, that was declared in main, in the changeMyVariable
function. However, we had to do this indirectly. Keep in mind that the variable that is passed into
the changeMyVariable function is a new variable, in this case an int* pointer variable. Its value
is initialized when we pass the memory address of var to the changeMyVariable function when we
call it in main.

The second way to change the variable is to pass it by reference. We change the program to
read:

Changing a variable in a function a right way with references:

5.3. VARIABLES HAVE A SCOPE 39

#include <iostream>

// prototype the new function

void changeMyVariable(int& x);

int main(int argc, char* argv[]) {

int var = 0;

std::cout << "var's address: " << &var << std::endl;

std::cout << "var(before) = " << var << std::endl;

changeMyVariable(var);

std::cout << "var(after) = " << var << std::endl;

return 0;

}

void changeMyVariable(int& x) {

std::cout << "x's address: " << &x << std::endl;

x = 3;

}

The program gives the following output:

var's address: 0x7ffeefbff67c

var(before) = 0

x's address: 0x7ffeefbff67c

var(after) = 3

Program ended with exit code: 0

Note that var (in main) and x (in changeMyVariable) are the same variable. After all, they both
are int variables at the same memory address. Passing by reference is an alternative method for
changing the value of a variable in another function.

5.3 Variables have a scope

Variables have a scope, which is the portion of the code in which they can be accessed, changed,
etc.. The scope of a variable is defined between { and }. Rewrite your code as follows:

40 CHAPTER 5. CONJUNCTION FUNCTION (WHAT’S YOUR FUNCTION?)1

Exploring scope:

#include <iostream>

int main(int argc, char* argv[]) {

{

int x = 0;

std::cout << "x = " << x << std::endl;

}

return 0;

}

This program should run and give the output x = 0; the additional brackets did not seem to affect
the program. Now, let’s make a minor change to the program by moving one of the curly brackets:

Exploring scope:

#include <iostream>

int main(int argc, char* argv[]) {

{

int x = 0;

}

std::cout << "x = " << x << std::endl;

return 0;

}

When I do this, XCode gives me one warning and one error. The error reads, “Use of

undeclared identifier ’x’.” Normally, the scope of x would be the entire main function (or,
at least, the portion of the main function after it was declared). However, in this little program, I
restricted x’s scope to be between another set of curly braces. When I attempted to use x outside
of its scope, in the std::cout statement, the compiler replies with an emphatic “No.”

We could have declared the variable outside of the function:

#include <iostream>

5.3. VARIABLES HAVE A SCOPE 41

int x; // global x

int main(int argc, char* argv[]) {

{

x = 0;

}

std::cout << "x = " << x << std::endl;

return 0;

}

Now, the variable x is available to any function in that file. It is said to be a ‘global variable.’
Declaring variables to be global in scope is generally not a great idea. The ‘globalness’ of the global
variable allows any function to change its value, which simply adds too many places in your code
where things can go wrong. Best to keep variables as limited in scope as possible, and if possible
under wraps with limited ways to change their value.

42 CHAPTER 5. CONJUNCTION FUNCTION (WHAT’S YOUR FUNCTION?)1

Chapter 6

A Pseudorandom Number Class

6.1 Into the deep end of the pool

In this chapter, we are going to make a random number generator. As it turns out, computers
can’t generate randomness on their own. All they can do is logical operations and math. So, how
do we make randomness from one of the most deterministic tools made by man? The answer is
that we don’t. Rather, we generate sequences of numbers that in many respects behave randomly.
To be more correct, I will modify my original statement: In this chapter, we are going to make a
pseudorandom number generator.

The sequence of pseudorandom numbers is completely determined by the initial value, called
the seed. If we initialize the pseudorandom number generator with the same seed, we will get the
same sequence out. If the sequence of random numbers revisits the value for the seed, it will repeat.
The period of the pseudorandom number is the length of this repeat. Good pseudorandom number
generators will have a very long period. Moreover, the values will be difficult to distinguish from
truly random numbers. For example, they shouldn’t be correlated with previous values.

You should be wary of using pseudorandom number generators. There is an entire sub-discipline
in computer science dedicated to developing better pseudorandom numbers.

We will implement a simple linear congruential generator described by Park and Miller (1988).
It is not a state-of-the-art pseudorandom number generator, but it will give you an idea of how
apparent randomness can be generated on a computer. It should be good enough for the applications
in this book.

A linear congruential generator starts with an initial value of an int variable called the seed.
The seed value is changed sequentially using the following equation:

si+1 = (a× si + c) mod m

where si is the ith value of the seed, a is the multiplier, c is the increment, and m is the modulus.
Good pseudorandom number generators that use the linear congruential generator choose a, c, and
m wisely. The seed value for a good choice of a, c, and m will bounce between 1 and the maximum
value possible in a way that has the appearance of randomness.

43

44 CHAPTER 6. A PSEUDORANDOM NUMBER CLASS

6.2 Making your first class

Make a new project naming it Project02. You can follow the instructions in the second chapter
of this book to accomplish this. After creating the new project, you should have a single file,
main.cpp, that contains the main function.

Once you have made the new project, you are ready to add a new class. If you are using XCode,
select File > New > File from the File menu item. This will lead to the following windows:

Choose C++ File and click on Next. In the following window, name the new class RandomVariable
and click Next. This leads to one final window. Simply click Create to make your new class files.
In the end, your project should look something like this (if you are using XCode):

6.3. WHY DO WE SPLIT THE CLASS INTO .HPP AND .CPP FILES? 45

You created two files, RandomVariable.hpp and RandomVariable.cpp. You can see them both
listed with the main.cpp file. When you compile the program, all the files are compiled to form
the executable.

Select the file RandomVariable.hpp. Add text to that file so it looks like the following:

RandomVariable.hpp:

#ifndef RandomVariable_hpp

#define RandomVariable_hpp

class RandomVariable {

double uniformRv(void);

int seed;

};

#endif

Next, select the RandomVariable.cpp file. Add text to this file, too:

RandomVariable.cpp:

#include "RandomVariable.hpp"

double RandomVariable::uniformRv(void) {

return 0.0;

}

Congratulations! You just made your first class. Eventually, it will be a very cool class, able to
generate pseudorandom numbers. We will build to that point, slowly.

What have we done, so far? We defined a class called RandomVariable. This class has one int
variable called seed and one function called uniformRv associated with it.

6.3 Why do we split the class into .hpp and .cpp files?

One of the more confusing aspects of programming is the fact that a typical program is not im-
plemented in a single file, but rather in many files. As mentioned earlier, the source code for a

46 CHAPTER 6. A PSEUDORANDOM NUMBER CLASS

program like RevBayes is distributed among several thousand files! Enjoy your good fortune; so
far, this program has only three (main.cpp, RandomVariable.hpp, and RandomVariable.cpp).

The class definition was split into two files. Generally speaking, classes are split into two in
C++. The RandomVariable.hpp file is called the header file. It contains the outline of the class
including the variables that are associated with each instance of the class and the functions that
are associated with the class. Again, in this class, we only have one variable (int seed) and one
function uniformRv). The class definition is simple:

class RandomVariable {

};

We include the variables and functions that will be associated with each instance of this class
between the curly brackets. You will also note that there are several compiler directives associated
with the file:

#ifndef RandomVariable_hpp

#define RandomVariable_hpp

#endif

The class definition occurs between the compiler directives. The compiler directives ensure that
the class is only defined once. Remember, our source code might be distributed among many files.
Any file that uses the capabilities of our RandomVariable class will include the file at the top, using
the include directive:

#include "RandomVariable.hpp"

Even though we may include the file in dozens (or more) files, we only want the class to be defined
once; hence, the compiler directives that guard against this. Alternatively, we could guard against
multiple inclusion using the once guard:

#pragma once

class RandomVariable {

double uniformRv(void);

int seed;

};

Which you use is a matter of personal preference.
If the header file outlines the data and functions associated with each instance of our RandomVariable

class, the implementation file (RandomVariable.cpp) represents the guts of the class. It’s in the
implementation file that we actually implement the functions. In our implementation file, we only
implement the uniformRv function:

double RandomVariable::uniformRv(void) {

return 0.0;

}

6.4. INSTANTIATING A CLASS 47

Eventually, this function will generate a pseudorandom number between 0 and 1. For now, it simply
returns the value 0. Note that we include the header file that contains the class definition at the
head (or top) of this file.

One last thing about the implementation file. You will have noted that the implementation of
the uniformRv function had RandomVariable:: before the function name. This is C++’s way of
indicating that this function definition is part of the RandomVariable class.

Why do we spread the implementation of the class across two files? One idea prevalent in object
oriented programming is that the implementation of a class should be hidden from those who use
the class. Imagine I wrote a class with functionality that you wanted in your program. You could
include the two files I wrote in your project and, voilà, your program now has the capabilities from
my class. In order to use that functionality in some file of your program, you would include the
header file from my class. The header file of my class should contain all of the information you need
to use the functionality of the class. By examining the functions that are available, for example,
you would see how to ‘interface’ with my code. (Hopefully, I would also include useful comments
to guide you.) Although the ideal of separating the interface and the implementation is usually not
purely implemented in any program that I am aware of, it’s a nice idea.

6.4 Instantiating a class

Rewrite the main.cpp file to read:

main.cpp:

#include <iostream>

#include "RandomVariable.hpp"

int main(int argc, char* argv[]) {

RandomVariable rv;

double u = rv.uniformRv();

std::cout << "u(0,1) = " << u << std::endl;

return 0;

}

If you do this, you should come across an error. In XCode, the error reads, “‘uniformRv’ is

a private member of ‘RandomVariable’.” What is going on? Help!

In C++, variables and functions in a class can be private or public. By default, variables and
functions are private. Because we did not indicate otherwise, the compiler assumed that both seed

and uniformRv were both private. To fix the problem, we need to go back to our class definition

48 CHAPTER 6. A PSEUDORANDOM NUMBER CLASS

in RandomVariable.hpp and insert two lines:

RandomVariable.hpp:

#ifndef RandomVariable_hpp

#define RandomVariable_hpp

class RandomVariable {

public:

double uniformRv(void);

protected:

int seed;

};

#endif

Public variables and functions are available to other parts of the code to use. The private or
protected elements of the class, however, are only available to other members of the class. We
want other parts of the code to have the ability to get a uniform random variable from this class.
Therefore, we make the uniformRv function public. On the other hand, the variable seed is part
of the mechanism that will generate the pseudorandom numbers. We don’t want other parts of the
program to have the ability to even touch this mechanism. Hence, we hide this variable away. This
sort of compartmentalization is a useful feature of C++. In general, you should attempt to keep
functions and variables private or protected unless, of course, it’s absolutely necessary to expose
the variable or function to the outside world of your code.

With the aside on public versus private/protected completed, let’s revisit our main function.
The first line of that function,

RandomVariable rv;

declares an instance of the RandomVariable class called rv. This line of code is analogous to
others you have seen, such as int x, which makes an instance of an integer variable called x. The
terminology we use when declaring instances of classes is a bit different than when we declare a
variable to be of type int. We would say that we are instantiating the RandomVariable class or
that we made an instance of the RandomVariable class. Just like other variables, our new variable
rv has a scope (the function main, in this case). You might have heard that C++ is an ‘object-
oriented’ programming language. Objects are just instances of classes. If it is important to you,
you can tell your loved ones that you just made your first object.

If you run the program, the output should look like

u(0,1) = 0

6.4. INSTANTIATING A CLASS 49

Program ended with exit code: 0

The code works. Often, I build up portions of the code just as we are doing here: incrementally.

When you make an instance of a class, as we have in our main function, several things happened
behind the scenes that you are unaware of. First of all, when the variable was created, a function
was called that you didn’t even know about! This function is called the default constructor function.
Again, this function was created even though we never wrote a line of code. Interestingly, we can
make our own default constructor that will be called instead. Add to the implementation file,
RandomVariable.cpp, several new functions, so that the file now looks like:

RandomVariable.cpp:

#include <ctime>

#include "RandomVariable.hpp"

RandomVariable::RandomVariable(void) {

seed = (int)time(NULL);

}

RandomVariable::RandomVariable(int x) {

seed = x;

}

double RandomVariable::uniformRv(void) {

return 0.0;

}

double RandomVariable::uniformRv(double lower, double upper) {

return 0.0;

}

Modify the header file to reflect the changes you made in the implementation file:

RandomVariable.hpp:

50 CHAPTER 6. A PSEUDORANDOM NUMBER CLASS

#ifndef RandomVariable_hpp

#define RandomVariable_hpp

class RandomVariable {

public:

RandomVariable(void);

RandomVariable(int x);

double uniformRv(void);

double uniformRv(double lower, double upper);

protected:

int seed;

};

#endif

You should test that you did everything correctly by attempting to run the program.

The default constructor has the same name as the class and does not return a variable (in fact,
it doesn’t even have the keyword void to indicate this, like normal functions that don’t return a
value). If we wanted to replicate, exactly, the default constructor that was created by the compiler,
we would simply include the following code:

RandomVariable::RandomVariable(void) {

}

Our implementation of the default constructor, however,

RandomVariable::RandomVariable(void) {

seed = (int)time(NULL);

}

sets the seed variable to be equal to the current time, obtained using the time function. The
variable that is returned by the time function is not an int variable, so we cannot directly equate
it to seed. The time function returns a variable of type time t. However, we can force the time t

variable to act as an int using the casting argument, which was the (int) before the time(NULL).
Casting can be dangerous. You can’t always sensibly cast one variable type into another. In this
case, however, you can sensibly cast a time t variable into an int variable. All is well.

Add a line of code to the default constructor, so that it now reads:

6.4. INSTANTIATING A CLASS 51

Default constructor of RandomVariable:

RandomVariable::RandomVariable(void) {

seed = (int)time(NULL);

std::cout << "Default constructor. The seed equals " << seed << std::endl;

}

In order to get the code to compile, you will need to add iostream using the include compiler
directive to the RandomVariable.cpp file. When I ran the program, I obtained the following output:

Default constructor. The seed equals 1532124958

u(0,1) = 0

Program ended with exit code: 0

The important point is this: We never explicitly called the default constructor. It was called for us
when rv was created.

Constructors are obvious places to initialize variables. For our RandomVariable class, it makes
sense to initialize the seed variable when an instance of the class is created. Moreover, because
we want a different sequence of pseudorandom numbers every time we run the program, we should
initialize the seed variable to something that changes, like time. Many implementations of pseu-
dorandom number generators use the computer’s internal clock to initialize the seed.

What if we want to initialize the seed variable to some other value? We have given our program
the ability to do just this. In the code, above, we implemented a second constructor! This one,

RandomVariable::RandomVariable(int x) {

seed = x;

}

takes an int argument and sets the seed variable to be equal to it. Add a line to this second
constructor, so it reads:

An alternative constructor of RandomVariable:

RandomVariable::RandomVariable(int x) {

seed = x;

std::cout << "Alternate constructor. The seed equals " << seed << std::endl;

}

52 CHAPTER 6. A PSEUDORANDOM NUMBER CLASS

Now, go to the main function and rewrite it so it reads:

main.cpp:

#include <iostream>

#include "RandomVariable.hpp"

int main(int argc, char* argv[]) {

RandomVariable rv1;

RandomVariable rv2(3);

RandomVariable rv3(1929);

RandomVariable rv4;

return 0;

}

When I ran the program, I got the following output:

Default constructor. The seed equals 1532125424

Alternate constructor. The seed equals 3

Alternate constructor. The seed equals 1929

Default constructor. The seed equals 1532125424

Program ended with exit code: 0

We made four different instances of the RandomVariable class. This means that we have four
instances of seed that were created, one for each. rv1 and rv4 were created using the default
constructor which sets the seed using the current time. Both of those objects have the same value
for the seed variable. They will produce the same sequences of pseudorandom numbers. The
computer created the four instances of RandomVariable so quickly that the time didn’t have a
chance to turn over, even by one! The other two instances of RandomVariable, rv2 and rv3, were
created using the alternative constructor that sets the seed to some value that is passed in.

One nice feature of C++ is function overloading. Different functions can have the same name,
as long as the arguments that are passed to the functions are different. In our RandomVariable

class, we see function overloading in two places: for the constructors

RandomVariable(void);

RandomVariable(int x);

and in the functions uniformRv

double uniformRv(void);

double uniformRv(double lower, double upper);

6.5. IMPLEMENTING THE UNIFORMRV FUNCTION 53

Even though the functions have the same name, the compiler can tell them apart because the
arguments that are passed to the functions are different. The compiler can tell which function
is being called, implicitly, by examining the list of arguments that are passed to it. We were
able to indicate to the compiler which constructor we wanted to be called when the objects were
instantiated: RandomVariable rv calls the default constructor, which doesn’t take any arguments,
whereas RandomVariable rv(3) calls the alternative constructor which takes a single int as an
argument.

6.5 Implementing the uniformRv function

We will implement the pseudorandom number generator described by Park and Miller (1988).
Change the code for the uniformRv(void) function in the RandomVariable.cpp file to read:

Pseudorandomness:

double RandomVariable::uniformRv(void) {

int hi = seed / 127773;

int lo = seed % 127773;

int test = 16807 * lo - 2836 * hi;

if (test > 0)

seed = test;

else

seed = test + 2147483647;

return (double)(seed) / (double)2147483647;

}

The code for pseudorandom number generators is always disturbing to look at. The non-
randomness of a pseudorandom number generator sort of smacks you in the face when you see the
code. You should be feeling a little queasy at this point.

Clearly, the seed variable is changed every time the uniformRv function is called. The number
that is returned is the new value for the seed divided by its maximum possible value. We use casting,
again, to force the compiler to treat seed as a double (real-valued number) when the division occurs
in the last line. If we didn’t do this, the function would return 0 every time.

The Park and Miller (1988) pseudorandom number generator follows the pattern I discussed
earlier found in linear congruential generators, where the next seed value is si+1 = (a × si + c)
mod m. However, the values of a, c, and m are obscured in this code. Why? Because the seed
value can potentially take on values greater than can be represented by 32 bits. Hence, the code
checks whether the next seed value will over flow before calculating it by performing a check (using

54 CHAPTER 6. A PSEUDORANDOM NUMBER CLASS

the test value). The constant values for this particular pseudorandom number generator are

a = 16807

m = 16807× 127773 + 2836 = 2147483647 = 231 − 1

c = 0

We have implemented the uniformRv(void) function, but have the uniformRv(double lower,

double upper) remaining to be implemented. Go to that function, and add the following code:

Example

double RandomVariable::uniformRv(double lower, double upper) {

return (lower + uniformRv() * (upper - lower));

}

This function uses the function that returns a uniformly-distributed random number on the interval
(0, 1) to generate a random number uniformly-distributed on the interval (Lower,Upper).

Now for some fun! Let’s test our random number generator. Modify your main function so it
reads:

Example

#include <iostream>

#include "RandomVariable.hpp"

int main(int argc, char* argv[]) {

RandomVariable rv;

for (int i=0; i<100; i++)

{

double u = rv.uniformRv();

std::cout << i << " -- " << u << std::endl;

}

return 0;

}

6.6. IMPLEMENTING THE EXPONENTIALRV FUNCTION 55

When you run this program, the output should be 100 pseudorandom numbers, uniformly dis-
tributed on the interval (0, 1).

Modify the program so that it starts with the same seed every time. Confirm that the sequence
of random numbers is the same every time the program is run.

6.6 Implementing the exponentialRv function

Besides being a nifty example of function overloading, our function uniformRv(double lower,

double upper) demonstrates a commonly-used method for generating random numbers that are
not uniform(0,1) random variables. That function transforms a uniform(0,1) random number into
a uniform(lower,upper) random number. We can use the same idea to generate different types
of random variables. Here, we will make one more random variable before moving on from our
discussion of classes.

The exponential probability distribution accurately models the waiting time until an event
occurs when that event occurs at a constant rate, λ. The exponential probability distribution is a
continuous distribution with density function, f(t) = λe−λt, for t > 0, λ > 0. How can we generate
an exponentially-distributed random number?

The idea is to transform the uniform(0,1) random variable into an exponential(λ) random
variable. We know that if we integrate over all possible values of t, that the overall probability is
one (i.e., the exponential is a probability distribution):∫ ∞

0
λe−λxdx = 1

The key to transforming our uniform into an exponential is to generate a uniform(0,1) random
variable called u and set the integral equal to that value:∫ t

0
λe−λxdx = u

We can solve for t as follows: ∫ t

0
λe−λxdx = u

−e−λx
∣∣∣t
0

= u

−e−λt −−e0 = u

1−−e−λt = u

e−λt = 1− u

−λt = ln(1− u)

t = − 1

λ
ln(1− u)

Here, t is an exponential(λ) random variable. It was obtained by transforming our uniform(0,1)
random variable, u. Equivalently, we could use the equation t = − 1

λ ln(u).
Now that we have the math out of the way, let’s implement our exponential random number

generator. Add to the RandomVariable.cpp file the following function:

56 CHAPTER 6. A PSEUDORANDOM NUMBER CLASS

Example

double RandomVariable::exponentialRv(double lambda) {

return -log(uniformRv()) / lambda;

}

You will have to do two things to get this to compile. First, include the function profile in the
header file for the class. Second, you will need to include the cmath header file in the implementation
file. (The natural log function, log, is implemented in cmath.)

Once you have successfully implemented the exponentialRv function, play around with it.
Generate a bunch of exponentially-distributed random numbers. What is the mean of the numbers
you generated? They should be near to the expectation for the exponential, E(X) = 1/λ. Confirm
this.

Chapter 7

Markov chain Monte Carlo

7.1 Some theory

Markov chain Monte Carlo (MCMC) is a numerical method for approximating high-dimensional
integrals and/or summations. The method was first described by Metropolis et al. (1953) and
later modified by (Hastings, 1970). The algorithm that we will implement in this chapter is often
referred to as the Metropolis-Hastings algorithm.

Use of the Metropolis-Hastings algorithm was mostly restricted to the field of statistical physics
until it was discovered by statisticians in the mid 1980s (Geman and Geman, 1984). Statisticians,
as a group, were largely unaware of the numerical method until Gelfand and Smith (1990) provided
a description of the method as a way to approximate intractable probability densities. It is fair to
say that MCMC has transformed the field of statistics, and in particular, Bayesian statistics.

Bayesian statisticians are interested in the posterior probability distribution of a parameter, θ,
which can be calculated using Bayes’s theorem as

P(θ|D) =
P(D|θ)P(θ)

P(D)

Here, P(θ|D) is the posterior probability distribution of the parameter. The posterior probability
is a conditional probability: the probability of the parameter conditioned on the observations, D.
The other factors in the equation include the likelihood [P(D|θ)], prior probability distribution of
the parameter [P(θ)], and marginal likelihood [P(D)].

How does Bayesian analysis work in practice? Consider an experiment in which a coin is
repeatedly tossed with the objective to estimate the probability that heads appears on a single toss
of the coin, a parameter we call θ. We observe x heads on n tosses of the coin. In a Bayesian
analysis, the objective is to calculate the posterior probability of the parameter, which for coin
tossing is

f(θ |x) = f(x | θ)f(θ)∫ 1
0 f(x | θ)f(θ) dθ

Look at the full list of authors for the Metropolis et al. (1953) paper. If you know your U.S. history, you will
recognize E. Teller as the father of the American hydrogen bomb.

57

58 CHAPTER 7. MARKOV CHAIN MONTE CARLO

0.0

1.0

2.0

3.0

4.0

0.00 0.25 0.50 0.75 1.00

θ

0.0

1.0

2.0

3.0

4.0

0.00 0.25 0.50 0.75 1.00

θ

0.0

1.0

2.0

3.0

4.0

0.00 0.25 0.50 0.75 1.00

θ

f(θ)

(a) (c)(b)

Figure 7.1: The Beta distribution can take a variety of shapes depending on the values of the
parameters α and β. Here, (a) α = β = 1, (b) α = β = 4, and (c) α = β = 1/2.

The likelihoood, f(x | θ), is given by the binomial probability distribution,

f(x | θ) =
(
n

x

)
θx(1− θ)n−x

where the binomial coefficient is
(
n
x

)
= n!

x!(n−x)! . In addition to the likelihood function, however, we

must also specify a prior probability distribution for the parameter, f(θ). This prior distribution
should describe the investigator’s beliefs about the hypothesis before the experiment was performed.
The problem, of course, is that different people may have different prior beliefs. In this case, it makes
sense to use a prior distribution that is flexible, allowing different people to specify different prior
probability distributions and also allowing for an easy investigation of the sensitivity of the results
to the prior assumptions. A Beta distribution is often used as a prior probability distribution for
the binomial parameter. The Beta distribution has two parameters, α and β. Depending upon the
specific values chosen for α and β, one can generate a large number of different prior probability
distributions for the parameter θ. Figure 7.1 shows several possible prior distributions for coin
tossing. Figure 7.1a shows a uniform prior distribution for the probability of heads appearing on
a single toss of a coin. In effect, a person who adopts this prior distribution is claiming total
ignorance of the dynamics of coin tossing. Figure 7.1b shows a prior distribution for a person who
has some experience tossing coins; anyone who has tossed a coin realizes that it is impossible to
predict which side will face up when tossed, but that heads appears about as frequently as tails,
suggesting more prior weight on values around θ = 0.5 than on values near θ = 0 or θ = 1. Lastly,
Figure 7.1c shows a prior distribution for a person who suspects he is being tricked. Perhaps the
coin that is being tossed is from a friend with a long history of practical jokes, or perhaps this
friend has tricked the investigator with a two-headed coin in the past. Figure 7.1c, then, might
represent the ‘trick-coin’ prior distribution.

Besides being flexible, the Beta prior probability distribution has one other admirable property:
when combined with a binomial likelihood, the posterior distribution also has a Beta probability
distribution (but with the parameters changed). Prior distributions that have this property — that
is, the posterior probability distribution has the same functional form as the prior distribution —
are called conjugate priors in the Bayesian literature. The Bayesian treatment of the coin tossing

7.1. SOME THEORY 59

experiment can be summarized as follows:

Prior [f(θ), Beta] Likelihood [f(x | θ), Binomial] Posterior [f(θ |x), Beta]

Γ(α+β)
Γ(α)Γ(β)θ

α−1(1− θ)β−1
(
n
x

)
θx(1− θ)n−x Γ(α+β+n)

Γ(α+x)Γ(β+n−x)θ
α+x−1(1− θ)β+n−x−1

[The gamma function, not to be confused with the gamma probability distribution, is defined as
Γ(y) =

∫∞
0 uy−1e−u du. Γ(n) = (n− 1)! for integer n = 1, 2, 3, . . . and Γ(12) = π.] We started with

a Beta prior distribution with parameters α and β. We used a binomial likelihood, and after some
use of our undergraduate calculus we calculated the posterior probability distribution, which is also
a Beta distribution but with parameters α+ x and β + n− x.

Figure 7.2 shows the relationship between the prior probability distribution, likelihood, and
posterior probability distribution of θ for two different cases, differing only in the number of coin
tosses. The posterior probability of a parameter is a compromise between the prior probability
and the likelihood. When the number of observations is small, as is the case for Figure 7.2a, the
posterior probability distribution is similar to the prior distribution. However, when the number
of observations is large, as is the case for Figure 7.2b, the posterior probability distribution is
dominated by the likelihood.

Above, I casually claimed that the posterior distribution was a Beta distribution. Working out
the math for this problem is informative. The posterior probability distribution for the coin tossing
problem can be calculated analytically. Here, we assume a binomial probability distribution for the
likelihood, and a Beta prior distribution on θ, which means the posterior probability distribution

0.0

3.0

6.0

9.0

12.0

0.00 0.25 0.50 0.75 1.00
0.0

1.0

2.0

3.0

4.0

0.00 0.25 0.50 0.75 1.00

(a)

f().
prior

likelihood

posterior

prior

likelihood

posterior

(b)

θ θ

Figure 7.2: As more data are collected for the coin-tossing example, the investigator’s prior opinions
play a smaller role in the conclusions. (a) The prior distribution, likelihood function, and posterior
probability density when α = β = 4, n = 10 and x = 8. (b) The prior distribution, likelihood
function, and posterior probability density when α = β = 4, n = 100 and x = 80

60 CHAPTER 7. MARKOV CHAIN MONTE CARLO

of the parameter θ is:

f(θ|x) =

(
n
x

)
θx(1− θ)n−x Γ(α+β)

Γ(α)Γ(β)θ
α−1(1− θ)β−1∫ 1

0

(
n
x

)
θx(1− θ)n−x Γ(α+β)

Γ(α)Γ(β)θ
α−1(1− θ)β−1dθ

Note that the denominator involves integration over all possible values of the parameter θ. Specif-
ically, the probability of heads on a single toss of a coin, θ, can take values between 0 and 1.

Evaulating the integral in the denominator depends upon the following observation: The Beta
probability distribution, like all continuous probability distributions, evaluates to one when inte-
grated over all possible values for the parameter:∫ 1

0

Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1dx = 1

Γ(α+ β)

Γ(α)Γ(β)

∫ 1

0
xα−1(1− x)β−1dx = 1∫ 1

0
xα−1(1− x)β−1dx =

Γ(α)Γ(β)

Γ(α+ β)

The denominator in the equation for the posterior probability distribution of θ, above, is∫ 1

0

(
n

x

)
θx(1− θ)n−x Γ(α+ β)

Γ(α)Γ(β)
θα−1(1− θ)β−1dθ(

n
x

)
Γ(α+ β)

Γ(α)Γ(β)

∫ 1

0
θx(1− θ)n−xθα−1(1− θ)β−1dθ(

n
x

)
Γ(α+ β)

Γ(α)Γ(β)

∫ 1

0
θα+x−1(1− θ)β+n−x−1dθ

Because
∫ 1
0 xα−1(1−x)β−1dx = Γ(α)Γ(β)/Γ(α+β), this means that

∫ 1
0 xα+x−1(1−x)β+n−x−1dx =

Γ(α+ x)Γ(β + n− x)/Γ(α+ β + n). The posterior probability distribution for θ, then, is

f(θ|x) =

(
n
x

)
θx(1− θ)n−x Γ(α+β)

Γ(α)Γ(β)θ
α−1(1− θ)β−1

(nx)Γ(α+β)

Γ(α)Γ(β)
Γ(α+x)Γ(β+n−x)

Γ(α+β+n)

=
Γ(α+ β + n)θx(1− θ)n−xθα−1(1− θ)β−1

Γ(α+ x)Γ(β + n− x)

=
Γ(α+ β + n)θα+x−1(1− θ)β+n−x−1

Γ(α+ x)Γ(β + n− x)

which is a Beta probability distribution with parameters α+ x and β + n− x.
I will make one comment about the analytical solution of the posterior probability distribution

for the coin-tossing problem: it involved hard math! Certainly, working through the math was
at the edge of my ability. However, for problems that are only slightly more complicated than coin
tossing (i.e., almost all other statistical problems), it is not possible to obtain the posterior prob-
ability distribution analytically. Until the advent of computers and algorithms for approximating
high-dimensional integrals/summation, people were up a river without a paddle if their problem
was somewhat complicated (i.e., problems that are actually interesting).

7.2. MCMC 61

7.2 MCMC

Even though we know the posterior probability distribution for the coin-tossing problem, we will
act as if we don’t and approximate the posterior probability distribution using MCMC. The goal of
MCMC is to construct a Markov chain that has as its state space the parameters of the model and
a stationary distribution that is the posterior probability of the parameters. How do we construct
a Markov chain that has these properties? The answer: Use the Metropolis-Hastings algorithm.
The steps of the Metropolis-Hastings algorithm are as follows:

1. Call the current state of the Markov chain θ. If this is the first cycle of the chain, then initialize
θ to some value. (Perhaps initialize θ by choosing a value from the prior distribution.)

2. Propose a new value for θ, called θ′. The details of the proposal mechanism are at the dis-
cretion of the programmer. However, he/she must follow some rules. For one, the proposal
mechanism that is coded must involve random numbers. That is, the proposal mechanism
cannot be a deterministic one. Some other requirements are that every state must be po-
tentially reachable given enough applications of the proposal mechanism and the proposal
mechanism cannot result in a periodic chain. (The last requirement is generally not an is-
sue.) Finally, you should be able to calculate the probability of proposing the proposed state,
q(θ → θ′) as well as the imagined reverse move, which is not actually made in computer
memory, q(θ′ → θ).

3. Calculate the probability of accepting the proposed state as the next state of the Markov
chain. This probability is the ratio of the posterior probabilities of the proposed and current
states times the Hastings ratio:

R = min

1,
f(θ′|X)

f(θ|X)
× q(θ′ → θ)

q(θ → θ′)︸ ︷︷ ︸
Hastings Ratio


It does not appear that we can solve this. After all, the entire point of MCMC is to approxi-
mate probability distributions that we cannot solve analytically. Here, things seem especially
intractable, because we need to calculate the ratio of two probability distributions that we
cannot calculate analytically! Relax. Let’s rewrite the ratio of the posterior probabilities
using Bayes’s theorem:

R = min

(
1,

f(X|θ′)f(θ′)/f(X)

f(X|θ)f(θ)/f(X)
× q(θ′ → θ)

q(θ → θ′)

)
Note that the marginal likelihood, f(X), cancels. Importantly, it was the marginal likelihood
that we cannot calculate analytically. The portions that are left over, after cancelling f(X),
are readily calculable. In the end, our acceptance probability is:

R = min

1,
f(X|θ′)
f(X|θ)︸ ︷︷ ︸

Likelihood Ratio

× f(θ′)

f(θ)︸ ︷︷ ︸
Prior Ratio

× q(θ′ → θ)

q(θ → θ′)︸ ︷︷ ︸
Hastings Ratio



62 CHAPTER 7. MARKOV CHAIN MONTE CARLO

4. Generate a uniform(0,1) random variable called u. If u < R, then accept the proposed state
as the next state of the Markov chain, setting θ = θ′. Otherwise, the chain remains in its
current state.

5. Go to Step # 2.

The steps of the Metropolis-Hastings algorithm are repeated many thousands, or millions, of times.
The states that are visited form a Markov chain. The key to MCMC is that the sampled states are
valid, albeit dependent, draws from the posterior probability distribution.

7.3 Coding MCMC for coin tossing

Make a new Project in your IDE. We will need to generate pseudorandom numbers for our MCMC
algorithm, so include in the project the RandomVariable class that you made in the last chapter.

We will assume that you have tossed a coin n = 100 times and observed x = 43 heads. The
likelihood function will be the binomial probability distribution. We will assume a flat prior in
which all values of the parameter θ, which is interpreted as the probability of heads on a single toss
of the coin, have equal probability. This is equivalent to a Beta prior probability distribution with
parameters α = β = 1.

We will build this program very slowly. First, let’s confirm that we can generate some random
numbers in the new project. Rewrite your main function so that it reads:

Example

#include <iostream>

#include "RandomVariable.hpp"

int main(int argc, const char * argv[]) {

// instantiate an object for generating random numbers

RandomVariable rv;

// test the random number generator

for (int i=0; i<100; i++)

{

double u = rv.uniformRv();

std::cout << i << " -- " << u << std::endl;

}

return 0;

}

7.3. CODING MCMC FOR COIN TOSSING 63

Confirm that the program compiles and that the output is 100 pseudorandom numbers. Many
programmers work in this way. They build up the program incrementally, testing it at each step.
We should have a compiling program that can generate random numbers. We are ready to continue.

Next, we will add some code that acts as the world’s most miserable user-interface. Modify
your main function to read:

Example

int main(int argc, const char * argv[]) {

// instantiate an object for generating random numbers

RandomVariable rv;

// this user-interface sucks!

int numTosses = 100;

int numHeads = 43;

int numTails = numTosses - numHeads;

int chainLength = 1000;

int printFrequency = 10;

int sampleFrequency = 1;

double window = 0.1;

return 0;

}

All we added were some variables that are going to be necessary for our MCMC analysis of the
coin-tossing problem. Why is this a miserable user-interface? Essentially, anybody who wanted to
use our program and had results that were different than x = 43 heads on n = 100 tosses of a coin
would have to go into the source code, change the numbers to reflect their results, and recompile
the code. Imagine if programs such as MrBayes instructed the user to modify the source code such
that a particular string, buried deep in the code, reflected the path to the file that contained the
data to be analyzed. The authors of the code would be hunted down and beaten up by their users.

Now that we have our user interface, we will write the main body of the MCMC loop:

Example

int main(int argc, const char * argv[]) {

64 CHAPTER 7. MARKOV CHAIN MONTE CARLO

// instantiate an object for generating random numbers

RandomVariable rv;

// this user-interface sucks!

int numTosses = 100;

int numHeads = 43;

int numTails = numTosses - numHeads;

int chainLength = 1000;

int printFrequency = 10;

int sampleFrequency = 1;

double window = 0.1;

// initialize theta to some value

// run the Markov chain

for (int n=1; n<=chainLength; n++)

{

// propose a new value for theta

// calculate the probability of accepting thetaPrime as

// the next state of the chain

// accept or reject thetaPrime, and update the state of the chain

}

return 0;

}

Again, we have made an incremental change. All we added was a loop with comments indicating
what we need to do at different portions of the code to accomplish the steps of the Metropolis-
Hastings algorithm. Again, confirm that the program compiles and runs. (There should be no
output, just an indication that the program successfully exited.)

The first step is to declare a variable that will hold the current state of the chain, and to
initialize this variable to some value. Add to the code, at the appropriate place, the following code:

7.3. CODING MCMC FOR COIN TOSSING 65

Example

// initialize theta to some value

double theta = rv.uniformRv();

Here, we declare a variable named theta to be of type double. This variable can hold a real-
valued number. We initialize it using the pseudorandom number generator. Initializing theta by
drawing from a uniform(0,1) probability distribution is equivalent to drawing from our flat prior
distribution.

Now that we have initialized theta, we move into the MCMC loop (the for loop). First, we
have to propose a new value for theta. Our proposal mechanism should adhere to the rules we
outlined in Step # 2 of our Metropolis-Hastings algorithm description. I would suggest that we use
a sliding window mechanism for proposing a new value for theta. The idea is to center a window
of fixed width on the current value of theta. Our new value for theta is chosen randomly, with
uniform probability, from the window. This means that our next value for the parameter will be
similar to the current value. Modify the appropriate part of the code in the main function to read:

Example

// propose a new value for theta

double thetaPrime = theta + (rv.uniformRv() - 0.5) * window;

if (thetaPrime < 0.0)

thetaPrime = -thetaPrime;

else if (thetaPrime > 1.0)

thetaPrime = 2.0 - thetaPrime;

Convince yourself that this proposal mechanism will propose a new value for theta, here called
thetaPrime, that is up to window/2 larger or window/2 smaller than theta. The proposal proba-
bility for the forward move is q(theta → thetaPrime) = 1/window. The probability of the reverse
move, which we don’t actually realize in computer memory, is q(thetaPrime → theta) = 1/window.
Also, note that after we propose the new value thetaPrime, we check that it is a valid value. The
probability of heads for a coin must be between 0 and 1. However, it’s possible for our sliding
window mechanism to propose values outside of that range. In this implementation, we reflect the
value back into the valid region. Another possible solution to the problem is to simply reject values
that are outside the valid range.

Next, we need to calculate the probability of accepting the proposed state. As pointed out in
our description of the Metropolis-Hastings algorithm, the acceptance probability is the product of

66 CHAPTER 7. MARKOV CHAIN MONTE CARLO

the likelihood ratio, prior ratio, and Hastings (or proposal) ratio:

R = min

(
1,

(
n
x

)
θ′x(1− θ′)n−x(

n
x

)
θx(1− θ)n−x

× 1

1
× 1/w

1/w

)
where n is numTosses, x is numHeads, and w is window in the C++ code. Also, note that the
binomial coefficients,

(
n
x

)
, cancel, so we won’t be dealing with them in the code. Finally, we will be

working with the natural log of the probabilities, and not the probabilities directly. We do this to
avoid underflow in the probabilities.

Modify the appropriate part of the code in the main function with the following code snippet:

Example

// calculate the probability of accepting thetaPrime as

// the next state of the chain

double lnLikelihoodRatio = (numHeads*log(thetaPrime)+numTails*log(1.0-thetaPrime)) -

(numHeads*log(theta)+numTails*log(1.0-theta));

double lnPriorRatio = 0.0; // natural log of 1.0

double lnHastingsRatio = 0.0; // natural log of 1.0

double lnR = lnLikelihoodRatio + lnPriorRatio + lnHastingsRatio;

double R = 0.0;

if (lnR < -300.0)

R = 0.0;

else if (lnR > 0.0)

R = 1.0;

else

R = exp(lnR);

Because you are now using the log and exp functions, you will need to include the cmath file in
this file. This code breaks the calculation into three parts. The first part calculates the natural log
of the likelihood ratio, a variable called lnLikelihoodRatio in the code. Remember that taking
the log turns multiplication into addition and division into subtraction. The next two quantities
— lnPriorRatio and lnHastingsRatio — are the logs of the prior and Hastings ratios, both of
which are one. They do not need to be included in the code because they are both zero (ln(1) = 0).
However, I include them both for pedagogical reasons, to remind you that in our case both ratios
just happen to be one. If we had used a different prior or proposal mechanism, this wouldn’t
necessarily be true.

The log of the acceptance probability is simply the sum of the log of the likelihood, prior, and
proposal ratios. This quantity is called lnR in the code. The last part of the code exponentiates
the lnR safely. We want a probability, not a log probability. We set the acceptance probability, R,
to be equal to zero if lnR is less than -300.0. We do this because if we were to encounter an lnR

less than -300.0, we would likely encounter an underflow error if we attempted exponentiation.

7.3. CODING MCMC FOR COIN TOSSING 67

Finally, we need to accept or reject the proposed state of the Markov chain. Add the following
fragment of code to the main function:

Example

// accept or reject thetaPrime, and update the state of the chain

double u = rv.uniformRv();

if (u < R)

theta = thetaPrime;

Congratulations! You have just written your first MCMC program. Your complete main func-
tion should look like:

Example

#include <cmath>

#include <iostream>

#include "RandomVariable.hpp"

int main(int argc, const char * argv[]) {

// instantiate an object for generating random numbers

RandomVariable rv;

// this user-interface sucks!

int numTosses = 100;

int numHeads = 43;

int numTails = numTosses - numHeads;

int chainLength = 1000;

int printFrequency = 10;

int sampleFrequency = 1;

double window = 0.1;

// initialize theta to some value

double theta = rv.uniformRv();

// run the Markov chain

68 CHAPTER 7. MARKOV CHAIN MONTE CARLO

for (int n=1; n<=chainLength; n++)

{

// propose a new value for theta

double thetaPrime = theta + (rv.uniformRv() - 0.5) * window;

if (thetaPrime < 0.0)

thetaPrime = -thetaPrime;

else if (thetaPrime > 1.0)

thetaPrime = 2.0 - thetaPrime;

// calculate the probability of accepting thetaPrime as

// the next state of the chain

double lnLikelihoodRatio = (numHeads*log(thetaPrime)+numTails*log(1.0-thetaPrime)) -

(numHeads*log(theta)+numTails*log(1.0-theta));

double lnPriorRatio = 0.0; // natural log of 1.0

double lnHastingsRatio = 0.0; // natural log of 1.0

double lnR = lnLikelihoodRatio + lnPriorRatio + lnHastingsRatio;

double R = 0.0;

if (lnR < -300.0)

R = 0.0;

else if (lnR > 0.0)

R = 1.0;

else

R = exp(lnR);

// accept or reject thetaPrime, and update the state of the chain

double u = rv.uniformRv();

if (u < R)

theta = thetaPrime;

}

return 0;

}

Go ahead and run the program. A bit underwhelming, isn’t it? The reason, of course, is
because we don’t see any output. The analysis runs, presumably does exactly what we want, then
the program exits.

Ideally, we would be able to witness the MCMC analysis as it proceeds. We can do this by
adding code that prints the current state of the Markov chain to the standard console.

Add code before and after the code segment that accepts or rejects the proposed state, such
that a portion of the code looks like:

7.3. CODING MCMC FOR COIN TOSSING 69

Example

// print (part 1)

if (n % printFrequency == 0)

{

std::cout << std::setw(5) << n << " -- ";

std::cout << std::fixed << std::setprecision(3) << theta << " -> ";

std::cout << std::fixed << std::setprecision(3) << thetaPrime << " ";

}

// accept or reject thetaPrime, and update the state of the chain

double u = rv.uniformRv();

bool isAccepted = false;

if (u < R)

{

theta = thetaPrime;

isAccepted = true;

}

// print (part 2)

if (n % printFrequency == 0)

{

if (isAccepted == true)

std::cout << "(Accepted)";

else

std::cout << "(Rejected)";

std::cout << std::endl;

}

Because we are using formatting commands, you will need to add the iomanip file to the file,
using the #include <iomanip> compiler directive. The statement if (n % printfrequency ==

0) divides the current MCMC cycle, n by printFrequency. If the remainder is 0, then we go ahead
and execute the portion of the code in the curly brackets after the if statement. This ensures that
we print the state of the Markov chain to the console ever printFrequency MCMC cycles. Printing
to the console takes place in two parts: both before and after we have decided to accept or reject
the proposed state. This code does a nifty job of printing the state of the chain to the screen. The
last 10 lines of my output look like:

910 -- 0.483 -> 0.440 (Accepted)

920 -- 0.429 -> 0.451 (Accepted)

930 -- 0.324 -> 0.344 (Accepted)

940 -- 0.430 -> 0.419 (Accepted)

70 CHAPTER 7. MARKOV CHAIN MONTE CARLO

950 -- 0.382 -> 0.361 (Accepted)

960 -- 0.424 -> 0.429 (Accepted)

970 -- 0.460 -> 0.493 (Rejected)

980 -- 0.477 -> 0.494 (Accepted)

990 -- 0.427 -> 0.460 (Accepted)

1000 -- 0.409 -> 0.450 (Accepted)

Now that you have a functioning MCMC program, play with it. Change the printFrequency

to one so you can see every MCMC cycle. Examine the early output, before the chain has reached
stationarity. Change the numTosses and numHeads values, making certain to keep numTosses ≥
numHeads. Does doing this change the values visited by the chain?

7.4 Summarizing MCMC output

Programs that implement MCMC typically output the current state of the chain to a file. Often,
they ‘thin’ the chain by only printing the chain’s state every so often. The problem with our
program is that it does not remember where the chain has been. There is no (easy) way to make
inferences about the posterior probability distribution of θ because we do not have the MCMC
samples.

We will modify the program to do this. First, add the following snippet of code just before the
for loop:

Example

// run the Markov chain

int bins[100];

for (int i=0; i<100; i++)

bins[i] = 0;

int numSamples = 0;

for (int n=1; n<=chainLength; n++)

{

// propose a new value for theta

Note that I also show some of the code that should already be in your main function as a
reference point, so you know where to insert the new code. All we do is declare a vector of 100
ints, called bins and another int variable called numSamples. The idea is that the bins variable
will count how often the chain visits states between 0.0 − 0.01 (for bins[0]), 0.01 − 0.02 (for
bins[1]), 0.02− 0.03 (for bins[2]), and so forth. The other variable, numSamples will count how
many samples were taken.

Next, add the following code after the second print statement, but before the main MCMC loop
ends:

7.4. SUMMARIZING MCMC OUTPUT 71

Example

// sample the chain

if (n % sampleFrequency == 0)

{

numSamples++;

bins[(int)(theta*100.0)]++;

}

After we finish the for loop, the bins vector will contain numSamples samples from the chain,
sampled ever sampleFrequency MCMC cycles.

It would be nice to see the state of the bins variable after the chain has completed. In the
following, I will provide code that constructs a nicely-formatted table. After the for loop, add the
following code:

Example

// summarize the results

double cumulativeProbability = 0.0;

for (int i=0; i<100; i++)

{

double intervalProbability = (double)bins[i] / numSamples;

cumulativeProbability += intervalProbability;

std::cout << std::fixed << std::setprecision(2) << i * 0.01 << " - ";

std::cout << std::fixed << std::setprecision(2) << (i+1) * 0.01 << " -- ";

std::cout << std::setw(5) << bins[i] << " ";

std::cout << std::fixed << std::setprecision(3) << intervalProbability << " ";

std::cout << std::fixed << std::setprecision(3) << cumulativeProbability << " ";

std::cout << std::endl;

}

return 0;

I included the return 0 statement as a reference to help you position this new code.
I changed the chainLength variable to be equal to 1000000 and then ran the program. A

portion of the table summarizing the results looked like:

0.20 - 0.21 -- 2 0.000 0.000

0.21 - 0.22 -- 2 0.000 0.000

72 CHAPTER 7. MARKOV CHAIN MONTE CARLO

0.22 - 0.23 -- 4 0.000 0.000

0.23 - 0.24 -- 4 0.000 0.000

0.24 - 0.25 -- 33 0.000 0.000

0.25 - 0.26 -- 57 0.000 0.000

0.26 - 0.27 -- 157 0.000 0.000

0.27 - 0.28 -- 380 0.000 0.001

0.28 - 0.29 -- 746 0.001 0.001

0.29 - 0.30 -- 1384 0.001 0.003

0.30 - 0.31 -- 2690 0.003 0.005

0.31 - 0.32 -- 4464 0.004 0.010

0.32 - 0.33 -- 7360 0.007 0.017

0.33 - 0.34 -- 11589 0.012 0.029

0.34 - 0.35 -- 17353 0.017 0.046

0.35 - 0.36 -- 24714 0.025 0.071

0.36 - 0.37 -- 33304 0.033 0.104

0.37 - 0.38 -- 43109 0.043 0.147

0.38 - 0.39 -- 53009 0.053 0.200

0.39 - 0.40 -- 63120 0.063 0.263

0.40 - 0.41 -- 71476 0.071 0.335

0.41 - 0.42 -- 77570 0.078 0.413

0.42 - 0.43 -- 80798 0.081 0.493

0.43 - 0.44 -- 80446 0.080 0.574

0.44 - 0.45 -- 77102 0.077 0.651

0.45 - 0.46 -- 72045 0.072 0.723

0.46 - 0.47 -- 63031 0.063 0.786

0.47 - 0.48 -- 54271 0.054 0.840

0.48 - 0.49 -- 44085 0.044 0.884

0.49 - 0.50 -- 34516 0.035 0.919

0.50 - 0.51 -- 26195 0.026 0.945

0.51 - 0.52 -- 19101 0.019 0.964

0.52 - 0.53 -- 13272 0.013 0.977

0.53 - 0.54 -- 8980 0.009 0.986

0.54 - 0.55 -- 5670 0.006 0.992

0.55 - 0.56 -- 3352 0.003 0.995

0.56 - 0.57 -- 2164 0.002 0.998

0.57 - 0.58 -- 1118 0.001 0.999

0.58 - 0.59 -- 675 0.001 0.999

0.59 - 0.60 -- 354 0.000 1.000

0.60 - 0.61 -- 171 0.000 1.000

0.61 - 0.62 -- 63 0.000 1.000

0.62 - 0.63 -- 43 0.000 1.000

0.63 - 0.64 -- 12 0.000 1.000

0.64 - 0.65 -- 6 0.000 1.000

(I didn’t show the part of the table before 0.20 or after 0.65.) The first two values identify the
interval; the next column is the count of the number of times the Markov chain visited the interval;

7.4. SUMMARIZING MCMC OUTPUT 73

the third column is the posterior probability of the interval, which is simply calculated as the
fraction of the time the chain was in the interval; the last column is the cumulative probability up
to the right edge of the interval.

Bayesians are religious about the idea that inferences should be based on the posterior proba-
bility distribution of the parameter. That said, they are fairly agnostic about how to summarize
the posterior distribution once it’s in hand. For example, one could form a point estimate by taking
the mean or mode of the posterior probability distribution. A credible interval can be formed by
examining the cumulative probability. Note that the the 0.025 quantile is somewhere between 0.33
and 0.34. Similarly, the 0.975 quantile occurs between 0.52 and 0.53. Therefore, a rough 95%
credible interval for the parameter θ is (0.33, 0.53). In words, there’s a 95% probability that the
true value lies in that interval. Interestingly, if you ask most scientists (excluding statisticians) to
describe a confidence interval, they instead describe a credible interval!

74 CHAPTER 7. MARKOV CHAIN MONTE CARLO

Chapter 8

Representing Trees in Computer
Memory

8.1 The basic idea

Figure 8.1a shows an example of a phylogenetic tree of three species. The species are named Sp1,
Sp2, and Sp3. The branches of the tree have lengths, which are typically in terms of expected
number of substitutions per site, but could also be in some other unit, such as time. The branch
lengths are also indicated on the tree. A tree is a complex thing consisting of nodes and branches.
The nodes are represented by the circles on the tree of Figure 8.1a whereas the branches are the

Left: NULL

Right: NULL

Anc: 0x04

Index: 0

Name: “Sp1”

Brlen: 0.10

Left: NULL

Right: NULL

Anc: 0x04

Index: 1

Name: “Sp2”

Brlen: 0.10

Left: NULL

Right: NULL

Anc: 0x05

Index: 2

Name: “Sp3”

Brlen: 0.30

Left: 0x04

Right: 0x03

Anc: NULL

Index: 4

Name: “”

Brlen: 0.00

0x01 0x02 0x03

0x05

Left: 0x01

Right: 0x02

Anc: 0x05

Index: 3

Name: “”

Brlen: 0.20

0x04

Sp1 Sp2 Sp3

0.10 0.10

0.30

0.20

(a) (b)

Figure 8.1: The nodes of a tree are objects, each of which contains information on its neighbors.
The boxes represent the node object and the numbers next to each box, such as 0x01 represent the
memory address of each object.

75

76 CHAPTER 8. REPRESENTING TREES IN COMPUTER MEMORY

lines between the nodes. The tree of Figure 8.1a is rooted; there is a direction to tree with some
nodes occurring before others. One of the nodes, the one furthest from the tips of the tree, is
denoted the ‘root’ node.

How can we represent such a complicated object in computer memory? The idea is to represent
a tree as a series of nodes, each of which has information on its neighbors. Figure 8.1b illustrates
the basic idea. Each node on the tree is represented as a box in Figure 8.1b, but would be an object
in C++. The address of each node is indicated next to each node in Figure 8.1b. You can see that
the ancestor of the node with address 0x01, which represents Sp1, is the node with address 0x04,
which happens to be the ancestor of Sp1 and Sp2.

The general strategy we will take in this chapter is to build up the machinery we need to
represent and manipulate trees in computer memory. We will start with the implementation of a
Node class, which will represent the nodes of the tree (i.e., the boxes of Figure 8.1b). We will also
implement a Tree class that will manage the nodes and allow us to manipulate the tree.

8.2 The Node class

Create a new project from your IDE. Name the project something sensible, like ProjectTree or
MyFirstTree. Your new project will only consist of a single file with the main function. Now we
need to add the basic files for our tree. First, create two new files from your IDE for a new C++
class called Node. One of the files should be named Node.hpp and the other should be named
Node.cpp. While you are at it, create two new files called Tree.hpp and Tree.cpp. Now we have
the files necessary to represent our trees. Let’s start coding!

Add the following code to the Node.hpp file:

Example

#ifndef Node_hpp

#define Node_hpp

#include <string>

class Node {

public:

Node(void);

Node* getLft(void) { return left; }

Node* getRht(void) { return right; }

Node* getAnc(void) { return ancestor; }

The terminology I use to describe trees as consisting of ‘nodes’ and ‘branches’ is one that comes from the field
of evolutionary biology. Mathematicians and computer scientists, however, see a tree as a type of graph. which has
vertices and edges, which are equivalent to nodes and branches, respectively.

8.2. THE NODE CLASS 77

int getIndex(void) { return index; }

std::string getName(void) { return name; }

double getBranchLength(void) { return branchLength; }

void setLft(Node* p) { left = p; }

void setRht(Node* p) { right = p; }

void setAnc(Node* p) { ancestor = p; }

void setIndex(int x) { index = x; }

void setName(std::string s) { name = s; }

void setBranchLength(double x) { branchLength = x; }

void print(void);

protected:

Node* left;

Node* right;

Node* ancestor;

int index;

std::string name;

double branchLength;

};

#endif

Let’s deconstruct this class definition. First, this class contains not one instance variable, as
was the case for our RandomVariable class that only had a int seed, but six! We have three
pointers of type Node*, an int, a double, and a std::string. The idea is that the Node pointers
will hold the memory address of the neighbors to the node. The index variable will simply be a
number that will help us distinguish nodes while debugging. The branchLength variable will hold
the length of the branch for the node. We will follow the convention that a Node’s branch is below
the Node. Finally, the string variable will hold the name of the node, if it happens to be a tip
node that represents a living species. Because we are using the std::string type in this class, we
have to include the string header file. You can see we do this before the class definition:

#include <string>

We made all of the instance variables for this class protected; other classes cannot directly
access these variables, even if they have a reference to the node. We allow other parts of the code
to change the instance variables with public functions. Each of these functions starts with set

(e.g., setAnc, which sets the ancestor variable). Similarly, we provide functions that start with
get that will return the current value of the instance variables. The set and get functions are
called ‘setters’ and ‘getters’ among computer scientists.

You will note that not only did we declare the functions in this class, but we also implemented
them at the same time. Consider the following line from our Node class definition:

78 CHAPTER 8. REPRESENTING TREES IN COMPUTER MEMORY

void setBranchLength(double x) { branchLength = x; }

We declare the function with void setBranchLength(double x). However, we then go ahead and
implement the function by continuing with the following snippet of code { branchLength = x; }
This is counter to what I said earlier when we implemented the RandomVariable class. There, I
said that you should implement the guts of the class in the implementation file (the file that ends
.cpp). Often, programmers will do what we did here and implement the function in the header file.
They typically do this if the function is a small one. Here, every one of the getters and setters has
one line of code. I went ahead and implemented the getters and setters in the header file to save
the time of doing so in the implementation file. You should try to implement one of the getters
or setters in the implementation file to convince yourself that (1) you can do so and (2) that the
program runs just fine if you do that.

We also declare a default constructor in the class definition, Node(void), and a function named
print(void). Both of these functions will consist of more than a few lines of code, so we will
implement them in the Node.cpp file. Add to the Node.cpp file the following code:

Example

#include "Node.hpp"

Node::Node(void) {

left = NULL;

right = NULL;

ancestor = NULL;

index = 0;

name = "";

branchLength = 0.0;

}

void Node::print(void) {

std::cout << "Node " << index << " (" << this << ")" << std::endl;

std::cout << " Lft: " << left << std::endl;

std::cout << " Rht: " << right << std::endl;

std::cout << " Anc: " << ancestor << std::endl;

std::cout << " Name: \"" << name << "\"" << std::endl;

std::cout << " Brlen: " << branchLength << std::endl;

}

Our default constructor simply initializes all of the instance variables. Remember, the default

8.3. THE TREE CLASS 79

constructor is called when we instantiate a Node. This means that when we first use a Node in the
code that we can count on all of the variables starting with the values we initialize in the default
constructor.

The print function simply prints to the console the state of the node. Two aspects of this
function should stand out. First, we use the this keyword. Every object in C++ knows its own
address, which can be accessed using this. A mildly interesting aspect of this function is that we
print quotation marks from within a string. We do this using \".

8.3 The Tree class

The Tree class will manage the nodes. Because we do not know how big our tree will be, the Tree
class will be responsible for allocating and deleting the Node objects that actually represent the
tree structure and information.

In the Tree.hpp file, add the following code:

Example

#ifndef Tree_hpp

#define Tree_hpp

#include <vector>

class Node;

class Tree {

public:

Tree(void);

~Tree(void);

void listNodes(void);

protected:

Node* root;

std::vector<Node*> nodes;

};

#endif

In many respects, this class should look familiar to you. As you scan though the class definition,
you should be comfortable with the idea that the class is defined as:

class Tree {

80 CHAPTER 8. REPRESENTING TREES IN COMPUTER MEMORY

};

Seeing variables that are public and protected shouldn’t freak you out. The idea of a instance
variable that is a pointer, such as Node* root, should make you feel warm and fuzzy. That said,
there are a few aspects of this class definition that are new. We will go through those one at a
time.

One of the unfamiliar instance variables is:

std::vector<Node*> nodes;

This declares a vector of Node pointers called nodes. This is the first time you have brushed
shoulders with the Standard Template Library (STL) in C++. The STL is a collection of tools
available to the C++ programmer that include containers, algorithms, and iterators. The vector

we use in the Tree class is an example of a container. As objects, STL containers have functions
associated with them. For example, the vector container has two functions that we will take
advantage of: push back and size. The push back function adds a new thing-to-be-contained to
the end of the vector object. The size function returns the number of ‘things’ in the vector. In
the Tree class, the ‘things’ in the vector are Node pointers. When we declare the vector object,
we also indicate what type of thing will be contained in it. We do this with the < and > signs:
vector<Node*>. Note that we need to include the file vector if we are to use a vector in our
code. This explains the compiler directive, #include <vector>.

You will also note that before the class definition, we added the line:

class Node;

This is called ‘forward declaration.’ We forward declare Node because we make reference to a Node

pointer in the class definition. (In fact, we do this twice, once when we declare the root variable
and again when we declare the nodes variable.) We could also have simply included the Node.hpp
file, right before or after we include the vector header,

#include <vector>

#include "Node.hpp"

in which case we could forgo the statement class Node. Both are equivalent in as much as the
code will compile and run. However, in keeping with the principle of including the least amount
of information necessary, the method employed here is preferable. In the class definition, we only
declare Node pointers (Node*). All pointers take up the same amount of memory. Essentially, all
the compiler has to do when examining this file is trust that we have implemented the Node class
elsewhere.

The last unfamiliar element of the Tree class is ~Tree(void). This looks a lot like our default
constructor, except for the addition of the tilde symbol. The addition of the tilde indicates that this
is a destructor function. As mentioned earlier, constructor functions are called when an object is
created. The destructor function, as the name implies, is called just before the object is destroyed.
Constructors are useful places to carry out initialization. Destructors, by contrast, are an excellent
place to carry out clean-up activities just before an object is destroyed.

Let’s implement the Tree class. Add code to the Tree.cpp file so it reads:

8.3. THE TREE CLASS 81

Example

#include <iostream>

#include "Node.hpp"

#include "Tree.hpp"

Tree::Tree(void) {

// make the three-species tree of Figure 8.1

// allocate the five nodes for the three-species tree

for (int i=0; i<5; i++)

{

Node* newNode = new Node;

nodes.push_back(newNode);

}

for (int i=0; i<nodes.size(); i++)

std::cout << "nodes[" << i << "] = " << nodes[i] << std::endl;

// set the member pointers

Node* p = nodes[0];

p->setAnc(nodes[3]);

p->setLft(NULL);

p->setRht(NULL);

p->setIndex(0);

p->setBranchLength(0.10);

p->setName("Sp1");

p = nodes[1];

p->setAnc(nodes[3]);

p->setLft(NULL);

p->setRht(NULL);

p->setIndex(1);

p->setBranchLength(0.10);

p->setName("Sp2");

p = nodes[2];

p->setAnc(nodes[4]);

p->setLft(NULL);

p->setRht(NULL);

p->setIndex(2);

82 CHAPTER 8. REPRESENTING TREES IN COMPUTER MEMORY

p->setBranchLength(0.30);

p->setName("Sp3");

p = nodes[3];

p->setAnc(nodes[4]);

p->setLft(nodes[0]);

p->setRht(nodes[1]);

p->setIndex(3);

p->setBranchLength(0.20);

p->setName("");

p = nodes[4];

p->setAnc(NULL);

p->setLft(nodes[3]);

p->setRht(nodes[2]);

p->setIndex(4);

p->setBranchLength(0.0);

p->setName("");

root = nodes[4];

}

Tree::~Tree(void) {

for (int i=0; i<nodes.size(); i++)

delete nodes[i];

}

void Tree::listNodes(void) {

for (int i=0; i<nodes.size(); i++)

{

nodes[i]->print();

}

}

This code sacrifices brevity in order to be more transparent. We will walk through this code
function-by-function.

Tree(void) — The default constructor is called when we instantiate a Tree. (A tree would be
instantiated with the declaration, Tree myTree;.) The default constructor makes the tree shown

8.3. THE TREE CLASS 83

in Figure 8.1. This tree has three tips and five nodes, so the first thing we do in the default
constructor is allocate five Nodes:

// allocate the five nodes for the three-species tree

for (int i=0; i<5; i++)

{

Node* newNode = new Node;

nodes.push_back(newNode);

}

for (int i=0; i<nodes.size(); i++)

std::cout << "nodes[" << i << "] = " << nodes[i] << std::endl;

Within the loop where we allocate the nodes we do two things. First, we declare a Node pointer
variable called newNode and set it equal to the memory address of the new node that was allocated
using the new function. The new function allocates the Node object and then returns the memory
address of the just-allocated object. We need to capture that address, and do so with the newNode
variable. We then add the memory address of the new Node to the nodes vector using the push back

function of the vector object. After the nodes are allocated, their memory addresses are printed
to the console.

The following lines of code are more interesting because you can see the real action for making
the tree. We set the information for each node that was allocated, one at a time. For example, the
first block of seven lines of code,

Node* p = nodes[0];

p->setAnc(nodes[3]);

p->setLft(NULL);

p->setRht(NULL);

p->setIndex(0);

p->setBranchLength(0.10);

p->setName("Sp1");

sets the information for the first node. For convenience, we declare a Node pointer variable called
p and set it equal to the memory address of the first node we allocated, Node* p = nodes[0]. In
the next line of code, we set the ancestor instance variable of nodes[0] to be equal to nodes[3].
Because the node pointed to by p is a tip, we set its left and right instance variables to be NULL.
Next, we set the index, branchLength, and name instance variables of p by calling the appropriate
setters.

In the earlier examples, we used the dot (‘.’) notation to call an object’s function. Here, we are
using the arrow (‘->’) operator to call an object’s function. How do you know when to use the dot
operator versus the arrow operator? The rule: use the dot operator when you have the object and
the arrow operator when you have a pointer to the object. In this code, we have pointers (memory
addresses) to Nodes, so we use the arrow notation.

The other blocks of code set up the information for the remaining nodes of the tree of Figure
8.1. The very last statement in the default constructor sets the root instance variable of the Tree
class to be equal to the memory address contained at nodes[4].

~Tree(void) — In the constructor, we allocated Nodes that constitute the tree. In the destruc-
tor, we free that memory using the delete function. If we were to neglect doing this, we would

84 CHAPTER 8. REPRESENTING TREES IN COMPUTER MEMORY

have introduced a memory leak bug to the program. Whenever you allocate memory with the new
function, you should remember to free that memory with the delete function. We dynamically
allocated memory once before, where we allocated an array of int variables:

int numToAllocate = 1000;

int* x = new int[numToAllocate];

which should be freed later in the code:

delete [] x;

Note that the delete function was followed by open and closed square brackets ([]). In the Tree
class destructor, however, we don’t follow the delete function with the square brackets. Why?
You should include the square brackets after the delete function when you allocated an array of
objects. If you only allocate a single object or variable, then you do not use the square brackets.
The following code snippet demonstrates the idea:

int* x = new int[100]; // allocate an array

int* y = new int; // allocate a single int variable

// do some stuff to x and y

delete [] x; // use the brackets, [], because x is an array

delete y; // ixnay on the racketbray because y is a single element

listNodes(void) — This function simply loops over the vector, nodes, and calls the print

function on each. This allows us to see the information on the tree.

Before we can check the correctness of our Tree implementation, we need to make an instance
of a tree. Change the main function of the program to actually instantiate a tree:

Example

#include "Tree.hpp"

int main(int argc, char* argv[]) {

Tree t;

t.listNodes();

return 0;

}

8.3. THE TREE CLASS 85

The main function declares a Tree variable called t (i.e., we instantiate one instance of the Tree

class). We then call the listNodes function. When I run the program, the output looked like:

nodes[0] = 0x10040d030

nodes[1] = 0x10040d070

nodes[2] = 0x10040c480

nodes[3] = 0x10040c4c0

nodes[4] = 0x10040c500

Node 0 (0x10040d030)

Lft: 0x0

Rht: 0x0

Anc: 0x10040c4c0

Name: "Sp1"

Brlen: 0.1

Node 1 (0x10040d070)

Lft: 0x0

Rht: 0x0

Anc: 0x10040c4c0

Name: "Sp2"

Brlen: 0.1

Node 2 (0x10040c480)

Lft: 0x0

Rht: 0x0

Anc: 0x10040c500

Name: "Sp3"

Brlen: 0.3

Node 3 (0x10040c4c0)

Lft: 0x10040d030

Rht: 0x10040d070

Anc: 0x10040c500

Name: ""

Brlen: 0.2

Node 4 (0x10040c500)

Lft: 0x10040c4c0

Rht: 0x10040c480

Anc: 0x0

Name: ""

Brlen: 0

Program ended with exit code: 0

Yay! We now have a three-species tree in computer memory. You should scrutinize the output
from your implementation to convince yourself that the information printed for each node is, indeed,
equivalent to the tree shown in Figure 8.1.

86 CHAPTER 8. REPRESENTING TREES IN COMPUTER MEMORY

8.4 Traversing trees in pre- or postorder

As thrilling as the idea of having a tree in computer memory is (and it is pretty cool), so what? If
you think about it, it’s rather useless to have a tree in computer memory if you can’t actually do
anything with that representation.

Many of the algorithms we use in evolutionary biology require that the nodes of the tree are
traversed in order, from the tips to the root or from the root to the tips (e.g., we traverse the tree
from the tips to the root when using the Felsenstein pruning algorithm; Felsenstein, 1981; Gallager,
1962, 1963). A traversal from the tips to the root is called a postorder traversal of the tree. The
opposite, a traversal from the root to the tips, is called a preorder traversal.

One of the grooviest aspects of representing trees as a linked list of pointers is that you can
apply recursive algorithms to get the pre- or postorder traversal sequence for the tree. How do
these algorithms work?

Modify a portion of the Tree.hpp file so that it reads:

Example

#ifndef Tree_hpp

#define Tree_hpp

#include <vector>

class Node;

class Tree {

public:

Tree(void);

~Tree(void);

std::vector<Node*>& getTraversalOrder(void) { return postOrderSequence; }

void listNodes(void);

protected:

void initializeTraversalOrder(void);

void passDown(Node* p);

Node* root;

std::vector<Node*> nodes;

std::vector<Node*> postOrderSequence;

};

#endif

8.4. TRAVERSING TREES IN PRE- OR POSTORDER 87

We added another STL vector called postOrderSequence which will eventually hold the memory
addresses in the postorder traversal order. We also declared and implemented a public getter func-
tion that returns this sequence. Finally, we declare two new functions, initializeTraversalOrder
and passDown, which will be implemented in the Tree.cpp file. Modify the implementation file,
Tree.cpp, by adding two functions:

Example

void Tree::initializeTraversalOrder(void) {

postOrderSequence.clear();

passDown(root);

}

void Tree::passDown(Node* p) {

if (p != NULL)

{

passDown(p->getLft());

passDown(p->getRht());

postOrderSequence.push_back(p);

}

}

Finally, call the initializeTraversalOrder function on the last line of the default constructor:

Example

root = nodes[4];

initializeTraversalOrder();

}

The initializeTraversalOrder function does two things. First, it makes certain that the
vector postOrderSequence is empty by calling the clear function. The clear function is another
function that is part of the vector implementation that empties out a vector. Once we are certain
that the postOrderSequence vector is empty, we call another function, passDown. We pass the
root variable (the memory address of the root) to the passDown function. This all seems quite
straight forward.

88 CHAPTER 8. REPRESENTING TREES IN COMPUTER MEMORY

(a) (b) (c) (d) (e)

Figure 8.2: The call stack for the simple program with three functions. (a) main is the first function
laid on top of the stack. (b) main calls functionOne, which is then put on top of the call stack. (c)
functionOne calls functionTwo, which is put on the call stack, but (d) removed once it finishes
execution. functionOne finishes execution and is removed from the call stack, leaving (e) the main
function to resume, and complete, execution.

It’s in the passDown function that things get interesting. First, we check that the Node address
that is passed into the function through the variable p is not NULL. If it is not NULL, then we call
passDown again, this time with the memory address of the node to the left of p. A function calling
itself? Mind blown! As if to compound the craziness, we call passDown again, this time with the
memory address of the node to the right of p. It’s only after these two recursive function calls that
we add p to the vector holding the postorder traversal sequence.

The first time I saw the passDown function, I (almost) believed that magic was involved. Of
course, I regained my composure: “This is a computer,” I told myself, “A totally deterministic
machine. Something sensible must be occurring in memory.” I was right. Something sensible is
occurring.

When your program is run, the current location of the execution of the code is maintained by
something called the ‘call stack.’ Consider the following simple program:

void functionOne(void);

void functionTwo(void);

int main(int argc, char* argv[]) {

int x = 0;

functionOne();

return 0;

}

void functionOne(void) {

int y;

functionTwo();

}

These rational thoughts probably explain why I’ve had a career in science and not in palmistry.

8.4. TRAVERSING TREES IN PRE- OR POSTORDER 89

void functionTwo(void) {

int z;

}

When the program executed, it starts at main and executes the instruction, to set aside memory for
a variable called x, first. It then calls functionOne. This function is then put on the top of the call
stack and executed one line at a time. It first sets aside memory for an int variable called y (within
the scope of that function), then calls functionTwo, which is then put on top of the call stack.
Execution of functionTwo then begins. A variable is declared, but then destroyed when we reach
the end of functionTwo. The key point: When execution of functionTwo completes, it is removed
from the top of the call stack. We return to the point of functionOne just after functionTwo was
called. functionOne then completes execution, the variable y is destroyed, and it is removed from
the top of the call stack. We return to the main function, and exit main, returning the number 0
as we do so. Figure 8.2 illustrates the idea.

To fully understand the passDown function, I encourage you to try the following fun exercise.
Make a document that contains only the passDown function. Make certain that the font size is
large, taking up as much of the page as possible, without causing the individual lines to wrap
around. Center the function on the page and print about 10 copies of the page. Look at Figure
8.1b and imagine that you are calling passDown from the initializeTraversalOrder function,
which is called with the memory address of the root node of the tree. Take a clean sheet of paper
with the printed function on it and with a pencil, note the memory address that is passed into
passDown the first time. Begin tracing the execution of that function, line-by-line. Every time
you recursively call passDown, add a fresh sheet of paper on top of the first, noting again with a
pencil the memory address that is passed into the passDown function. As you traverse the tree,
your stack of papers will grow and shrink. When you reach a tip node, in which both the left and
right memory address are NULL, you will add another sheet of paper, but this time you will pass
NULL into the function. Note that the recursive function calls will be completely bypassed. Once
you reach the end of execution for a passDown function call, remove the paper from the stack. You
should end up with a clean desk.

Does the routine work? Let’s find out. Modify your main function to read:

Example

#include <iostream>

#include "Node.hpp"

#include "RandomVariable.hpp"

#include "Tree.hpp"

int main(int argc, char* argv[]) {

90 CHAPTER 8. REPRESENTING TREES IN COMPUTER MEMORY

Tree t;

std::vector<Node*> postOrd = t.getTraversalOrder();

std::cout << "Postorder: ";

for (int i=0; i<postOrd.size(); i++)

std::cout << postOrd[i]->getIndex() << " ";

std::cout << std::endl;

std::cout << "Preorder: ";

for (int i=postOrd.size()-1; i>=0; i--)

std::cout << postOrd[i]->getIndex() << " ";

std::cout << std::endl;

return 0;

}

We get a reference to the postorder traversal sequence from the tree by calling the t.getTraversalOrder
function. We then print the vector that is returned twice; once from the beginning to the end
(i.e., in postorder) and then from the end to the beginning (i.e., in preorder). When I run the
program, I get the following output:

Postorder: 0 1 3 2 4

Preorder: 4 2 3 1 0

Program ended with exit code: 0

The nodes are being visited in the correct order!

Chapter 9

Simulating the Birth-Death Process of
Cladogenesis

9.1 A stochastic model of cladogenesis

The birth-death process of cladogenesis is widely-used in evolutionary biology to model the Tree of
Life. The process models the splitting (speciation) and termination (extinction) of lineages through
time. The probability of a speciation event occurring in an infinitesimal interval of time, ∆t, is
λ∆t whereas the probability of an extinction event occurring in the same infinitesimal interval of
time is µ∆t. This implies that the time between speciation or extinction events is exponentially
distributed with parameter λ + µ. When an event occurs, it is a speciation with probability λ

λ+µ

or an extinction with probability µ
λ+µ .

Kendall (1948) derived the probability that a single lineage, extant at time t in the past, gives
rise to N lineages in the present:

PN (t) =

(
λ

µ

)N−1

P1(t) [P0(t)]
N−1

for N ≥ 2, where P0(t) is the probability that the process dies out, leaving no species alive at the
end of the process, and is equal to

P0(t) =
µ− µe−(λ−µ)t

λ− µe−(λ−µ)t

and P1(t) is the probability that exactly one lineage survives

P1(t) =
(λ− µ)2e−(λ−µ)t

(λ− µe−(λ−µ)t)2
.

The quantities P0(t) and P1(t) are particularly important because they are used as the building
blocks to compute the probability of a time-calibrated phylogenetic tree (Thompson, 1975). Kendall
(1948) also derived the expected number of lineages alive after a duration of t: E(N) = N0e

(λ−µ)t,
where N0 is the number of lineages at time t = 0.

Table 9.1 gives the probability of N species surviving to the present when λ = 3, µ = 1, and
t = 1. Note that for this choice of parameter values, the process is expected to die out, leaving no

91

92 CHAPTER 9. SIMULATING THE BIRTH-DEATH PROCESS OF CLADOGENESIS

Table 9.1: Probabilities ofN species surviving to the present when λ = 3, µ = 1, and the simulations
are run over a duration t = 1.

N PN (t) N PN (t) N PN (t) N PN (t) N PN (t)

0 0.301838 5 0.044351 10 0.027001 15 0.016438 20 0.010008
1 0.065967 6 0.040161 11 0.024450 16 0.014885 > 20 0.095909
2 0.059734 7 0.036366 12 0.022140 17 0.013479
3 0.054090 8 0.032930 13 0.020049 18 0.012205
4 0.048979 9 0.029818 14 0.018154 19 0.011052

living descendants, about 30% of the time. The growing evolutionary tree is fragile when there are
only a few lineages. A string of bad luck can wipe out all of the lineages, terminating the process.

Figure 9.1 shows 64 realizations of the birth-death process when λ = 3, µ = 1, and t = 1.
Note the variability in the realized outcomes of the process. Do the simulated results look like
genuine evolutionary trees to you? What simplifying assumptions are being made that make you
uncomfortable?

9.2 Coding the birth-death process

We will modify the project from the previous chapter, in which you implemented Tree and Node

classes. We know that we will need to generate random numbers to generate a birth-death tree.
Therefore, add the RandomVariable class you made earlier to this project. (In XCode, go the the
File menu and select File > Add Files to "<Project Name>"... Select the files from your
earlier project. You should select the option to copy the files into your new project directory.)

Figure 9.1: Realizations of the birth-death process of cladogenesis.

9.2. CODING THE BIRTH-DEATH PROCESS 93

There are multiple places we could implement the algorithm for building the birth-death process
tree. We will build the tree in the Tree constructor. First, delete the default constructor from the
implementation file of the original project. Also, change the Tree.hpp file such that it reads:

Example

#ifndef Tree_hpp

#define Tree_hpp

#include <vector>

class Node;

class RandomVariable;

class Tree {

public:

Tree(double lambda, double mu, double duration,

RandomVariable* rv);

~Tree(void);

std::vector<Node*>& getTraversalOrder(void) { return postOrderSequence; }

void listNodes(void);

protected:

Tree(void) { }

void initializeTraversalOrder(void);

void passDown(Node* p);

Node* root;

std::vector<Node*> nodes;

std::vector<Node*> postOrderSequence;

};

#endif

We removed the default constructor from the Tree.cpp file, but reimplemented it in the header
file. Where did we do this? Look at the first line under the key word protected. Not only
do we declare the default constructor there, but we implement it between the curly brackets:
Tree(void) { }. This means that we will no longer be able to instantiate a Tree object using the
default constructor. Doing so causes an error, preventing the program from being compiled. (In
XCode, the error reads, Calling a protected constructor of class ‘Tree’.) We are forcing
ourselves, and others, to use our new constructor to instantiate a tree. This is a clever use of the
protected (or private) key words in C++.

94 CHAPTER 9. SIMULATING THE BIRTH-DEATH PROCESS OF CLADOGENESIS

Now, modify your Tree.cpp file so that it looks like:

Example

#include <iostream>

#include "Node.hpp"

#include "RandomVariable.hpp"

#include "Tree.hpp"

Tree::Tree(double lambda, double mu, double duration, RandomVariable* rv) {

// generate a birth-death with parameter lambda, mu, and duration

std::cout << "Calling the birth-death tree constructor" << std::endl;

}

Tree::~Tree(void) {

std::cout << "Calling the Tree destructor with " << nodes.size() << " nodes" << std::endl;

for (int i=0; i<nodes.size(); i++)

delete nodes[i];

}

void Tree::initializeTraversalOrder(void) {

postOrderSequence.clear();

passDown(root);

}

void Tree::listNodes(void) {

for (int i=0; i<nodes.size(); i++)

{

nodes[i]->print();

}

}

void Tree::passDown(Node* p) {

if (p != NULL)

{

passDown(p->getLft());

9.2. CODING THE BIRTH-DEATH PROCESS 95

passDown(p->getRht());

postOrderSequence.push_back(p);

}

}

Finally, modify your main function:

Example

#include "RandomVariable.hpp"

#include "Tree.hpp"

int main(int argc, char* argv[]) {

RandomVariable rv;

Tree t(3.0, 1.0, 1.0, &rv);

t.listNodes();

return 0;

}

This program should compile and run. Try to do so. When I run the program, the output is:

Calling the birth-death tree constructor

Calling the Tree destructor with 0 nodes

Program ended with exit code: 0

This output confirms that the new Tree constructor is called and that when the tree variable, t,
goes out of scope in main that the destructor is called. Now that you have confirmed that everything
is working as we expect, remove the print statements in the new constructor and the destructor.

We will start our tree with two Nodes. One will be the root and the other node its descendant.
Because the root node has a descendant, it cannot itself speciate or go extinct. Its fate has been
determined. The other node, however, we might designate the ‘active node’ because it can speciate
or go extinct; its fate has not yet been determined. A simple method for generating a birth-death
tree is to keep a list of active nodes. We start the process with a single active node. You can
visualize the starting condition for the tree:

96 CHAPTER 9. SIMULATING THE BIRTH-DEATH PROCESS OF CLADOGENESIS

Root

Active

Node

t = 0.0

To implement this beginning state, enter the following code in the new Tree constructor:

Example

Tree::Tree(double lambda, double mu, double duration, RandomVariable* rv) {

// generate a birth-death with parameter lambda, mu, and duration

// initialize the single lineage, adding

// the descendant to a list of active nodes

nodes.push_back(new Node);

nodes.push_back(new Node);

nodes[0]->setLft(nodes[1]);

nodes[1]->setAnc(nodes[0]);

std::set<Node*> activeNodes;

activeNodes.insert(nodes[1]);

}

We make use of another type of STL container in this snippet of code. A set in C++ acts just as
a set does in mathematics. We use a set because it’s easy to insert and delete elements from the
set.

Now for the fun part. We will add code that represents the skeleton for generating a birth-death
process tree:

Example

Tree::Tree(double lambda, double mu, double duration, RandomVariable* rv) {

9.2. CODING THE BIRTH-DEATH PROCESS 97

// generate a birth-death with parameter lambda, mu, and duration

// initialize the single lineage, adding

// the descendant to a list of active nodes

nodes.push_back(new Node);

nodes.push_back(new Node);

nodes[0]->setLft(nodes[1]);

nodes[1]->setAnc(nodes[0]);

std::set<Node*> activeNodes;

activeNodes.insert(nodes[1]);

root = nodes[0];

// generate the full tree

double t = 0.0;

while (t < duration)

{

// increment t using the exponential distribution

// if t is still less than duration, go ahead do the speciation

// or extinction thing on a randomly selected active lineage

// put in this statement to show that if you execute the

// program now, you will never terminate because this is

// currently an infinite loop! Presumably, we'll remove this

// code later.

std::cout << "I'm an infinite loop. Wheeeeeeeee!" << std::endl;

}

}

I wouldn’t recommend running this program, but if you do, you’ll need to abort the execution of
the program. Do you see why the while loop never terminates? When I run the program, the last
ten lines of code read:

I'm an infinite loop. Wheeeeeeeee!

I'm an infinite loop. Wheeeeeeeee!

I'm an infinite loop. Wheeeeeeeee!

I'm an infinite loop. Wheeeeeeeee!

I'm an infinite loop. Wheeeeeeeee!

I'm an infinite loop. Wheeeeeeeee!

I'm an infinite loop. Wheeeeeeeee!

I'm an infinite loop. Wheeeeeeeee!

98 CHAPTER 9. SIMULATING THE BIRTH-DEATH PROCESS OF CLADOGENESIS

I'm an infinite loop. Wheeeeeeeee!

Program ended with exit code: 9

Modify the while loop to fix the problem and add some code for generating our tree:

Example

// generate the full tree

double t = 0.0;

while (t < duration)

{

// increment t using the exponential distribution

double rate = activeNodes.size() * (lambda + mu);

t += rv->exponentialRv(rate);

// if t is still less than duration, go ahead do the speciation

// or extinction thing on a randomly selected active lineage

if (t < duration)

{

// choose a node

Node* p = NULL;

// choose a type of event

double u = rv->uniformRv();

if (u < lambda / (lambda+mu))

{

// speciation event

}

else

{

// extinction event

}

}

}

Now, the logic of the process is fully exposed, even if we haven’t completed the implementation.
Each time we go through the loop, we increment t by adding to it an exponentially-distributed
random variable. The parameter of the exponential distribution is the overall rate of change. For
a single lineage, the overall rate at which a speciation or extinction event occurs is lambda + mu.
The overall rate, then, is n times greater if there are n lineages. After all, each lineage has a rate

9.2. CODING THE BIRTH-DEATH PROCESS 99

of speciation and extinction. The set of activeNodes contains all those nodes that can speciate or
go extinct. The overall rate, then, is simply activeNodes.size() * (lambda + mu). The next
line of code increments t by the exponential random variable. The operator += adds to the original
value. The two statements, x = x + 3 and x += 3 are equivalent in C++.

If after we increment, the variable t remains less than duration, we know that we will subject
one of the nodes in the list activeNodes to a speciation or extinction event. We need to do two
things. First, we need to randomly select one of the nodes in activeNodes. We also need to decide
whether it is a speciation or extinction event. We have only partially implemented both.

First, add a new function to the Tree class that will choose a Node* at random from the set

of activeNodes. The implementation of the function should be:

Example

Node* Tree::chooseNodeFromSet(std::set<Node*>& s, RandomVariable* rv) {

int whichNode = (int)(s.size() * rv->uniformRv());

int i = 0;

for (Node* nde : s)

{

if (whichNode == i)

return nde;

i++;

}

return NULL;

}

The STL set has easy insertion and deletion, but because of the internal representation of the
elements in a set, it is difficult to randomly pick any element from the set. Here, we choose a
random integer between 0 and the number of elements in the set, minus one. We then loop over
the elements in the set until we hit the element whose offset is the same as our random integer.
There are better ways to do this, but none that I could think of that were as clear.

Modify the code in the loop as follows:

Example

if (t < duration)

{

// choose a node

100 CHAPTER 9. SIMULATING THE BIRTH-DEATH PROCESS OF CLADOGENESIS

Node* p = chooseNodeFromSet(activeNodes, rv);

// choose a type of event

double u = rv->uniformRv();

if (u < lambda / (lambda+mu))

{

// speciation event

Node* newLft = new Node; // 1. allocate new left and

Node* newRht = new Node; // right nodes

nodes.push_back(newLft); // 2. add the new nodes to the tree

nodes.push_back(newRht);

newLft->setAnc(p); // 3. set the ancestor of both new

newRht->setAnc(p); // nodes to be p

p->setLft(newLft); // 4. set the left and right values of

p->setRht(newRht); // p to be the new nodes

activeNodes.erase(p); // 5. modify the list of active nodes

activeNodes.insert(newLft);

activeNodes.insert(newRht);

}

else

{

// extinction event

activeNodes.erase(p); // poor p ... he's dead

}

}

Your program now generates a tree under the birth-death process of cladogenesis. Unfortunately,
the output is less than inspiring. For one, we do not track when the speciation or extinction events
occur, so it’s impossible to report the branch lengths of the tree. Let’s spend some time cleaning
up our implementation.

The first task is to add to the Node class a new variable that will keep track of the time for the
node. I am going to leave it up to you to do this without holding your hand. Just make certain
that the time variable is stored as a double and that the getter and setter are called getTime and
setTime. In the constructor for the Tree class, add the following line:

Example

9.2. CODING THE BIRTH-DEATH PROCESS 101

// choose a node

Node* p = chooseNodeFromSet(activeNodes, rv);

p->setTime(t);

The first two lines of code should already exist; they are there only to help you position the single
line of new code: p->setTime(t). When we choose p, we know its time will be fixed to the time
of the event. Once we know p, we might as well set its time using the setter you implemented in
the Node class.

Add a bit of code after the while loop:

Example

// clean up

numExtant = activeNodes.size();

for (Node* nde : activeNodes)

{

nde->setTime(duration);

}

initializeTraversalOrder();

// set the index variable and assign branch lengths from the node times

int nodeIdx = 0;

for (int i=0; i<postOrderSequence.size(); i++)

{

Node* p = postOrderTraversalOrder[i];

if (p->getLft() == NULL && p->getRht() == NULL)

{

p->setIndex(nodeIdx++);

p->setName(std::to_string(nodeIdx));

}

if (p->getAnc() != NULL)

p->setBranchLength(p->getTime() - p->getAnc()->getTime());

}

for (int i=0; i<postOrderTraversalOrder.size(); i++)

{

Node* p = postOrderTraversalOrder[i];

if (!(p->getLft() == NULL && p->getRht() == NULL))

102 CHAPTER 9. SIMULATING THE BIRTH-DEATH PROCESS OF CLADOGENESIS

p->setIndex(nodeIdx++);

}

The code we just added does several things:

1. We assign the number of surviving nodes in activeNodes to the variable numExtant. If you
try to compile this modified code, you’ll get an error stating that there is no numExtant

variable in the Tree class. Go ahead and add that instance variable to the tree. While you’re
at it, add a getter and setter for numExtant. What type of variable do you think this should
be? A double? A bool? An int?

2. We set the times for any nodes that happen to have survived to the end by looping over the
surviving nodes in activeNodes and assigning the time for each to be equal to duration.

3. We initialize the postorder traversal sequence for the tree.

4. We calculate the branch lengths for all of the nodes using the time of each node. Branch
lengths on this tree will be in units of time.

5. While we are assigning the branch lengths, we also set the index instance variable for each
node of the tree. Nodes are indexed in such a way that the tips of the tree are numbered
0, 1, . . . , N − 1 and the interior nodes are indexed N,N + 1,

Run the program. You should get a list of nodes for a tree that is a realization of the birth-death
process. When I run the program, I obtained the following:

Node 7 (0x100658b60)

Lft: 0x100603a20

Rht: 0x0

Anc: 0x0

Name: ""

Brlen: 0

Time: 0

Node 6 (0x100603a20)

Lft: 0x100603a70

Rht: 0x1006594a0

Anc: 0x100658b60

Name: ""

Brlen: 0.194768

Time: 0.194768

Node 5 (0x100603a70)

Lft: 0x100659520

Rht: 0x100659570

9.2. CODING THE BIRTH-DEATH PROCESS 103

Anc: 0x100603a20

Name: ""

Brlen: 0.311997

Time: 0.506765

Node 3 (0x1006594a0)

Lft: 0x0

Rht: 0x0

Anc: 0x100603a20

Name: "4"

Brlen: 0.805232

Time: 1

Node 0 (0x100659520)

Lft: 0x0

Rht: 0x0

Anc: 0x100603a70

Name: "1"

Brlen: 0.493235

Time: 1

Node 4 (0x100659570)

Lft: 0x100659600

Rht: 0x100659650

Anc: 0x100603a70

Name: ""

Brlen: 0.448062

Time: 0.954828

Node 1 (0x100659600)

Lft: 0x0

Rht: 0x0

Anc: 0x100659570

Name: "2"

Brlen: 0.0451723

Time: 1

Node 2 (0x100659650)

Lft: 0x0

Rht: 0x0

Anc: 0x100659570

Name: "3"

Brlen: 0.0451723

Time: 1

(You probably noticed that I modified the print function in the Node class to print the time for
the node.) Still not pretty output. But, consider this: We made a birth-death tree!

104 CHAPTER 9. SIMULATING THE BIRTH-DEATH PROCESS OF CLADOGENESIS

9.3 Printing the tree as a Newick string

The Newick tree format was designed and adopted by several of the early developers of phylogeny
software packages — J. Felsenstein, D. Swofford, F. J. Rohlf, C. Meacham, J. Archie, and W.
Maddison — at Newick’s restaurant in Durhan, New Hampshire, on June 24, 1986. They wanted
a standardized format describing trees so that any of their programs could read trees produced
by another program. The meeting at the restaurant was motivated by conversations at the 1986
Evolution Meetings (the joint meetings of the Society of the Systematic Biologists, the American
Society of Naturalists, and the Society for the Study of Evolution). They hunkered down to work
at Newick’s restaurant while the meeting was underway. The Newick tree format was the result.
According to D. Swofford, the meal at Newick’s restaurant was a good one. Perhaps he should
write a long-overdue Yelp review?

The Newick format represents trees using parantheses. For example, the tree of Figure 8.1a can
be represented as

((Sp1,Sp2), Sp3)

This format has several advantages: a single tree can be written to a plain text file on a single line;
trees can be directly created in computer memory by reading the Newick string from left to right;
and it requires few character to represent a tree.

Add to your Tree class two functions:

Example

std::string Tree::getNewickRepresentation(void) {

std::stringstream ss;

writeTree(root->getLft(), ss);

std::string newick = ss.str();

return newick;

}

void Tree::writeTree(Node* p, std::stringstream& ss) {

if (p != NULL)

{

if (p->getLft() == NULL)

{

ss << p->getName() << ":" << std::fixed << std::setprecision(5) <<

p->getBranchLength();

}

else

{

9.3. PRINTING THE TREE AS A NEWICK STRING 105

ss << "(";

writeTree (p->getLft(), ss);

ss << ",";

writeTree (p->getRht(), ss);

if (p->getAnc() == NULL)

ss << ")";

else

ss << "):" << std::fixed << std::setprecision(5) << p->getBranchLength();

}

}

}

Your complete header file (Tree.hpp) should now look like:

Example

#ifndef Tree_hpp

#define Tree_hpp

#include <set>

#include <sstream>

#include <string>

#include <vector>

class Node;

class RandomVariable;

class Tree {

public:

Tree(double lambda, double mu, double duration,

RandomVariable* rv);

~Tree(void);

std::vector<Node*>& getTraversalOrder(void) { return postOrderSequence; }

void listNodes(void);

std::string getNewickRepresentation(void);

int getNumExtant(void) { return numExtant; }

106 CHAPTER 9. SIMULATING THE BIRTH-DEATH PROCESS OF CLADOGENESIS

void setNumExtant(int x) { numExtant = x; }

protected:

Tree(void) { }

Node* chooseNodeFromSet(std::set<Node*>& s, RandomVariable* rv);

void initializeTraversalOrder(void);

void passDown(Node* p);

void writeTree(Node* p, std::stringstream& ss);

Node* root;

std::vector<Node*> nodes;

std::vector<Node*> postOrderSequence;

int numExtant;

};

#endif

I made the getNewickRepresentation function public but the writeTree function protected. Why
do you think that is? Because the writeTree function uses the string stream, we need to include
sstream in the Tree.hpp file (where it is first used).

It is through the getNewickRepresentation function that other parts of the program can
obtain a string with the Newick representation of the tree. This function returns a string. The
code for that function,

std::stringstream ss;

writeTree(root->getLft(), ss);

std::string newick = ss.str();

return newick;

first declares a stringstream variable, called ss. A stringstream operates much like the iostream
that you have been using to direct characters to the console using std::cout. But, sstream

acts much like a string, too. We use the functionality of this object in the writeTree function,
to output the birth-death tree in Newick format. Note that after inserting characters into the
string stream in writeTree, we convert it to a string object that is then returned from the
getNewickRepresentation function.

Like the passDown function we used in the previous chapter to initialize the postorder traversal
sequence for the tree, the writeTree function is also recursive. However, in this function, we do
things before, between, and after the two recursive function calls.

Modify the main function so that it reads:

9.3. PRINTING THE TREE AS A NEWICK STRING 107

Example

#include <iostream>

#include "RandomVariable.hpp"

#include "Tree.hpp"

int main(int argc, char* argv[]) {

RandomVariable rv;

Tree t(3.0, 1.0, 1.0, &rv);

std::cout << t.getNewickRepresentation() << std::endl;

return 0;

}

Compile and run the code. I ran the program, obtaining the following output:

(1:0.04425,2:0.14025):0.14240

which represents a tree of two species:

1

2

This is a tree that went extinct before reaching the end of the simulation (specified by the duration
parameter). Because we generated this tree with the parameters λ = 3, µ = 1, and t = 1, we know
that the probability of the tree going extinct is approximately 0.3.

Several programs will display Newick strings as nicely-formatted trees. My favorite program
for doing this is FigTree (http://tree.bio.ed.ac.uk/software/figtree/), which was written
by A. Rambaut. Run the FigTree program, if you happen to have it. Generate a tree under the
birth-death process of cladogenesis using the program you just wrote. Copy the Newick string

108 CHAPTER 9. SIMULATING THE BIRTH-DEATH PROCESS OF CLADOGENESIS

that is output by your program and paste it into the open FigTree window. You should see the
representation of your tree in the window. It should look pretty!

Figure 9.2 shows an example of the output of the program when I ran it on my computer. You
can see that this tree has 38 extant species and 7 extinct lineages. This is a view of the process that
evolutionary biologists are never afforded. The fossil record, of course, gives a glimpse into which
species existed in the past. If a group does not have any fossils, the only information available is
through the living taxa. The reconstructed process prunes away any lineages that did not happen
to make it to the present. This would involve pruning away the 7 extinct lineages. Remarkably,
inferences about the speciation and extinction rates can be made on the reconstructed tree (Nee
et al., 1994).

Our implementation of the birth-death process of cladogenesis has no bells and whistles. Rather,
it implements the simple birth-death process. Evolutionary biologists are now interested in esti-
mating parameters of embellished versions of the birth-death process. For example, we think the
speciation and extinction rates can change over the course of time and across different lineages.
Certainly, mass extinction events represent times when the extinction rate is higher. How would
you modify the program to simulate mass extinction? How would you modify the program to allow
the rates of speciation and extinction to change on the tree?

You will undoubtedly start playing with this program now that it has been successfully imple-
mented. The program has several parameter that you can change, and I don’t doubt that you will
immediately start changing the speciation and extinction rates (lambda and mu). Go for it! But,
beware: birth-death trees can become quite large very quickly. For our combination of parameters

0.10

Figure 9.2: A single realization of the birth-death process of cladogenesis generated by the program
written in this chapter. The tree was displayed using FigTree.

9.3. PRINTING THE TREE AS A NEWICK STRING 109

— λ = 3, µ = 1, and t = 1 — the expected number of species is E(N) = 7.40. (Remember,
the expected number of extant species is E(N) = e(λ−µ)t.) If we were to change λ to λ = 10,
we would, on average, expect to see E(N) = 8, 103.08 tips! This is a number that could be han-
dled by the program, but I’m not certain it could handle a change in λ to λ = 20, in which case
E(N) = 178, 482, 300.96. One possible change you could make to the code is to set a maximum
number of nodes in the tree. If the tree attempts to grow past this maximum, you could exit the
program with an error warning.

110 CHAPTER 9. SIMULATING THE BIRTH-DEATH PROCESS OF CLADOGENESIS

Chapter 10

Simulating Sequence Evolution on a
Tree

10.1 Assumptions of phylogenetic methods

The models used in phylogenetic analysis of molecular data have three components. First, they
assume a tree relating the samples. Here, the samples might be DNA sequences collected from
different species, or different individuals within a population. In either case, a basic assumption is
that the samples are related to one another through an (unknown) tree. This would be a species tree
for sequences sampled from different species, or perhaps a coalescence tree for sequences sampled
from individuals from within a population. Second, they assume that the branches of the tree have
an (unknown) length. Ideally, the length of a branch on a tree is in terms of time. However, in
practice it is difficult to determine the duration of a branch on a tree in terms of time. Instead, the
lengths of the branches on the tree are in terms of expected change per character. Figure 10.1 shows
some examples of trees with branch lengths. The main points the reader should remember are: (1)
Trees can be rooted or unrooted. Rooted trees have a time direction whereas unrooted trees do not.
Most methods of phylogenetic inference, including most implementations of maximum likelihood
and Bayesian analysis, are based on time-reversible models of evolution that produce unrooted trees,
which must be rooted using some other criterion, such as the outgroup criterion (using distantly
related reference sequences to locate the root). (2) The space of possible trees is huge. The number

of possible unrooted trees for n species is B(n) = (2n−5)!
2n−3(n−3)!

(Schröder, 1870). This means that for

a relatively small problem of only n = 50 species, there are about B(50) = 2.838 × 1074 possible
unrooted trees that can explain the phylogenetic relationships of the species.

The third component of a phylogenetic model is a process that describes how the characters
change on the phylogeny. All model-based methods of phylogenetic inference, including maximum
likelihood and Bayesian estimation of phylogeny, currently assume that character change occurs
according to a continuous-time Markov chain. At the heart of any continuous-time Markov chain
is a matrix of rates, specifying the rate of change from one state to another. For example, the
instantaneous rate of change under the model described by Hasegawa et al. (1984, 1985, hereafter

111

112 CHAPTER 10. SIMULATING SEQUENCE EVOLUTION ON A TREE

called the HKY85 model) is

Q = {qij} =


− πC κπG πT
πA − πG κπT
κπA πC − πT
πA κπC πG −

µ

This matrix specifies the rate of change from one nucleotide to another; the rows and columns of
the matrix are ordered A,C,G, T , so that the rate of change from C → G is qCG = πG. Similarly,
the rates of change between C → T , G → A, and T → C, are qCT = κπT , qGA = κπA, and
qTG = πG, respectively. The diagonals of the rate matrix, denoted with the dashes, are specified
such that each row sums to zero. Finally, the rate matrix is rescaled such that the mean rate of
substitution is one. This can be accomplished by setting µ = −1/

∑
i∈{A,C,G,T} πiqii. This rescaling

of the rate matrix such that the mean rate is one allows the branch lengths on the phylogenetic
tree to be interpreted as expected number of nucleotide substitutions per site.

We will make a few important points about the rate matrix. First, the rate matrix may have
free parameters. For example, the HKY85 model has the parameters κ, πA, πC , πG, and πT .

B

D

C

A

A
B D

C

A
B

D
C

A

B

D
C

A
B

D

C

A
B

D

C

Figure 10.1: An unrooted tree of four species (center) with the branch lengths drawn proportional
to their length in terms of expected number of substitutions per site. The five trees surrounding
the central, unrooted, tree show the five possible rooted trees that result from the unrooted tree.

10.1. ASSUMPTIONS OF PHYLOGENETIC METHODS 113

The parameter κ is the transition/transversion rate bias; when κ = 1 transitions occur at the
same rate as transversions. Typically, the transition/transversion rate ratio, estimated using max-
imum likelihood or Bayesian inference, is greater than one; transitions occur at a higher rate than
transversions. The other parameters — πA, πC , πG, and πT — are the base frequencies, and have
a biological interpretation as the frequency of the different nucleotides and are also, incidentally,
the stationary probabilities of the process (more on stationary probabilities later). Second, the rate
matrix, Q, can be used to calculate the transition probabilities and the stationary distribution of
the substitution process. The transition probabilities and stationary distribution play a key role in
calculating the likelihood, and we will spend more time here developing an intuitive understanding
of these concepts.

10.1.1 Transition probabilities

Let us consider a specific example of a rate matrix, with all of the parameters of the model taking
specific values. For example, if we use the HKY85 model and fix the parameters to κ = 5, πA = 0.4,
πC = 0.3, πG = 0.2, and πT = 0.1, we get the following matrix of instantaneous rates

Q = {qij} =


−0.886 0.190 0.633 0.063
0.253 −0.696 0.127 0.316
1.266 0.190 −1.519 0.063
0.253 0.949 0.127 −1.329


Note that these numbers are not special in any particular way. That is to say, they are not based
upon any observations from a real data set, but are rather arbitrarily picked to illustrate a point.
The point is that one can interpret the rate matrix in the physical sense of specifying how changes
occur on a phylogenetic tree. Consider the very simple case of a single branch on a phylogenetic
tree. Let’s assume that the branch is v = 0.5 in length and that the ancestor of the branch is the
nucleotide G. The situation we have is something like that shown in Figure 10.2a. How can we
simulate the evolution of the site starting from the G at the ancestor? The rate matrix tells us how
to do this. First of all, because the current state of the process is G, the only relevant row of the
rate matrix is the third one:

Q = {qij} =


· · · ·
· · · ·

1.266 0.190 −1.519 0.063
· · · ·


The overall rate of change away from nucleotideG is qGA+qGC+qGT = 1.266+0.190+0.063 = 1.519.
Equivalently, the rate of change away from nucleotide G is simply −qGG = 1.519. In a continuous-
time Markov model, the waiting time between substitutions is exponentially distributed. The exact
shape of the exponential distribution is determined by its rate, which is the same as the rate of the
corresponding process in the Q matrix. For instance, if we are in state G, we wait an exponentially
distributed amount of time with rate 1.519 until the next substitution occurs. One can easily
construct exponential random variables from uniform random variables using the equation

t = − 1

λ
loge(u)

114 CHAPTER 10. SIMULATING SEQUENCE EVOLUTION ON A TREE

v = 0.5

A B C

Figure 10.2: A single realization of the substitution process under the HKY85 model when κ = 5,
πA = 0.4, πC = 0.3, πG = 0.2, and πT = 0.1. The length of the branch is v = 0.5 and the starting
nucleotide is G (light gray). A, The process starts in nucleotide G. B, The first change is 0.152
units up the branch. C, the change is from G to A (dark gray). The time at which the next change
occurs exceeds the total branch length, so the process ends in state C.

where λ is the rate and u is a uniform(0,1) random number. For example, my calculator has a
uniform(0,1) random number generator. The first number it generated is u = 0.794. This means
that the next time at which a substitution occurs is 0.152 up from the root of the tree (using
λ = 1.519; Figure 10.2b). The rate matrix also specifies the probabilities of a change from G to the
nucleotides A, C, and T . These probabilities are

G → A : 1.266
1.519 = 0.833, G → C : 0.190

1.519 = 0.125, G → T : 0.063
1.519 = 0.042

To determine what nucleotide the process changes to we would generate another uniform(0,1)
random number (again called u). If u is between 0 and 0.833, we will say that we had a change
from G to A. If the random number is between 0.833 and 0.958 we will say that we had a change
from G to C. Finally, if the random number u is between 0.958 and 1.000, we will say we had a
change from G to T . The next number generated on our calculator was u = 0.102, which means
the change was from G to A. The process is now in a different state (the nucleotide A) and the
relevant row of the rate matrix is

Q = {qij} =


−0.886 0.190 0.633 0.063

· · · ·
· · · ·
· · · ·


We wait an exponentially distributed amount of time with parameter λ = 0.886 until the next
substitution occurs. When the substitution occurs, it is to a C, G, or T with probabilities 0.190

0.886 =
0.214, 0.633

0.886 = 0.714, and 0.063
0.886 = 0.072, respectively. This process of generating random and

exponentially distributed times until the next substitution occurs and then determining (randomly)
what nucleotide the change is to is repeated until the process exceeds the length of the branch.
The state the process is in when it passes the end of the branch is recorded. In the example of
Figure 10.2, the process started in state G and ended in state A. (The next uniform random
variable generated on our calculator was u = 0.371, which means that the next substitution would

10.1. ASSUMPTIONS OF PHYLOGENETIC METHODS 115

occur 1.119 units above the substitution from G → A. The process is in the state A when it passed
the end of the branch.) The only non-random part of the entire procedure was the initial decision
to start the process in state G. All other aspects of the simulation used a uniform random number
generator and our knowledge of the rate matrix to simulate a single realization of the HKY85
process of DNA substitution.

This Monte Carlo procedure for simulating the HKY85 process of DNA substitution can be
repeated. The following table summarizes the results of 100 simulations, each of which started
with the nucleotide G:

Starting Ending Number of
Nucleotide Nucleotide Replicates

G A 27
G C 10
G G 59
G T 4

This table can be interpreted as a Monte Carlo approximation of the transition probabilities from
nucleotide G to nucleotide i ∈ (A,C,G, T). Specifically, the Monte Carlo approximations are
pGA(0.5) ≈ 0.27, pGC(0.5) ≈ 0.10, pGG(0.5) ≈ 0.59, and pGT (0.5) ≈ 0.04. These approximate
probabilities are all conditioned on the starting nucleotide being G and the branch length being
v = 0.5. We performed additional simulations in which the starting nucleotide was A, C, or
T . Together with the earlier Monte Carlo simulation that started with the nucleotide G, these
additional simulations allow us to fill out the following table with the approximate transition
probabilities:

Ending
Nucleotide

A C G T
A 0.67 0.13 0.20 0.00

Starting C 0.13 0.70 0.07 0.10
Nucleotide G 0.27 0.10 0.59 0.04

T 0.12 0.30 0.08 0.50

Clearly, these numbers are only crude approximations to the true transition probabilities; after all,
each row in the table is based on only 100 Monte Carlo simulations. However, they do illustrate
the meaning of the transition probabilities; the transition probability, pij(v), is the probability
that the substitution process ends in nucleotide j conditioned on it starting in nucleotide i after
an evolutionary amount of time v. The table of approximate transition probabilities, above, can
be interpreted as a matrix of probabilities, usually denoted P(v). Fortunately, we do not need to
rely on Monte Carlo simulation to approximate the transition probability matrix. Instead, we can
calculate the transition probability matrix exactly using matrix exponentiation:

P(v) = eQv

For the case we have been simulating, the exact transition probabilities (to four decimal places) are

P(0.5) = {pij(0.5)} =


0.7079 0.0813 0.1835 0.0271
0.1085 0.7377 0.0542 0.0995
0.3670 0.0813 0.5244 0.0271
0.1085 0.2985 0.0542 0.5387



116 CHAPTER 10. SIMULATING SEQUENCE EVOLUTION ON A TREE

The transition probability matrix accounts for all the possible ways the process could end up in
nucleotide j after starting in nucleotide i. In fact, each of the infinite possibilities is weighted by
its probability under the substitution model.

10.1.2 Stationary distribution

The transition probabilities provide the probability of ending in a particular nucleotide after some
specific amount of time (or opportunity for substitution, v). These transition probabilities are
conditioned on starting in a particular nucleotide. What do the transition probability matrices
look like as v increases? The following transition probability matrices show the effect of increasing
branch length:

P(0.00) =


1.000 0.000 0.000 0.000
0.000 1.000 0.000 0.000
0.000 0.000 1.000 0.000
0.000 0.000 0.000 1.000

 P(0.01) =


0.991 0.002 0.006 0.001
0.003 0.993 0.001 0.003
0.013 0.002 0.985 0.001
0.003 0.009 0.001 0.987



P(0.10) =


0.919 0.018 0.056 0.006
0.024 0.934 0.012 0.029
0.113 0.018 0.863 0.006
0.025 0.086 0.012 0.877

 P(0.50) =


0.708 0.081 0.184 0.027
0.106 0.738 0.054 0.100
0.367 0.081 0.524 0.027
0.109 0.299 0.054 0.539



P(1.00) =


0.580 0.141 0.232 0.047
0.188 0.587 0.094 0.131
0.464 0.141 0.348 0.047
0.188 0.394 0.094 0.324

 P(5.00) =


0.411 0.287 0.206 0.096
0.383 0.319 0.192 0.106
0.411 0.287 0.206 0.096
0.383 0.319 0.192 0.107



P(10.0) =


0.401 0.299 0.200 0.099
0.399 0.301 0.199 0.100
0.401 0.299 0.200 0.099
0.399 0.301 0.199 0.100

 P(100) =


0.400 0.300 0.200 0.100
0.400 0.300 0.200 0.100
0.400 0.300 0.200 0.100
0.400 0.300 0.200 0.100


(Each matrix was calculated under the HKY85 model with κ = 5, πA = 0.4, πC = 0.3, πG = 0.2,
and πT = 0.1.) Note that as the length of a branch, v, increases, the probability of ending up in a
particular nucleotide converges to a single number, regardless of the starting state. For example,
the probability of ending up in C is about 0.300 when the branch length is v = 100. This is true
regardless of whether the process starts in A, C, G, or T . The substitution process has in a sense
‘forgotten’ its starting state.

The stationary distribution is the probability of observing a particular state when the branch
length increases without limit (v → ∞). The stationary probabilities of the four nucleotides are
πA = 0.4, πC = 0.3, πG = 0.2, and πT = 0.1 for the example discussed above. The models
typically used in phylogenetic analyses have the stationary probabilities built into the rate matrix,
Q. You will notice that the rate matrix for the HKY85 model has parameters πA, πC , πG, and
πT , and that the stationary frequencies of the four nucleotides for our example match the input
values for our simulations. Building the stationary frequency of the process into the rate matrix,
while somewhat unusual, makes calculating the likelihood function easier. For one, specifying the
stationary distribution saves the time of figuring out what the stationary distribution is (which

10.1. ASSUMPTIONS OF PHYLOGENETIC METHODS 117

C

A

G

T TCCT

T

v1

v8

v6

v3

v7

v5v4v2

(Sp. 1) (Sp. 2) (Sp. 3) (Sp. 4) (Sp. 5)

Figure 10.3: One of the possible (rooted) trees describing the evolutionary history of the five species.
The states at the first site in the alignment of the text are shown at the tips of the tree. The states
at the interior nodes of the tree are also shown, though in reality these states are not observed.
The length of the ith branch is denoted vi.

involves solving the equation πQ = 0, which simply says that, if we start with the nucleotide
frequencies reflecting the stationary distribution, the process will have no effect on the nucleotide
frequencies). For another, it allows one to more easily specify a time reversible substitution model.
[A time reversible substitution model has the property that πiqij = πjqji for all i, j ∈ (A,C,G, T),
i ̸= j.] Practically speaking, time reversibility means that we can work with unrooted trees instead
of rooted trees (assuming that the molecular clock is not enforced).

Calculating the likelihood

The transition probabilities and stationary distribution are used when calculating the likelihood.
For example, consider the following alignment of sequences for five species:

Species 1 TAACTGTAAAGGACAACACTAGCAGGCCAGACGCACACGCACAGCGCACC

Species 2 TGACTTTAAAGGACGACCCTACCAGGGCGGACACAAACGGACAGCGCAGC

Species 3 CAAGTTTAGAAAACGGCACCAACACAACAGACGTATGCAACTGACGCACC

Species 4 CGAGTTCAGAAGACGGCACCAACACAGCGGACGTATGCAGACGACGCACC

Species 5 TGCCCTTAGGAGGCGGCACTAACACCGCGGACGAGTGCGGACAACGTACC

This is clearly a rather small alignment of sequences to use for estimating phylogeny, but it will
illustrate how likelihoods are calculated. The likelihood is the probability of the alignment of
sequences, conditioned on a tree with branch lengths. The basic procedure is to calculate the
probability of each site (column) in the matrix. Assuming that the substitutions are independent
across sites, the probability of the entire alignment is simply the product of the probabilities of the
individual sites.

How is the likelihood at a single site calculated? Figure 10.3 shows the observations at the first
site (T , T , C, C, and T) at the tips of one of the possible phylogenetic trees for five species. The

This alignment was simulated on the tree of Figure 10.3 under the HKY85 model of DNA substitution. Parameter
values for the simulation can be found in the caption of Table 1.

118 CHAPTER 10. SIMULATING SEQUENCE EVOLUTION ON A TREE

tree in Figure 10.3 is unusual in that we will assume that the nucleotide states at the interior nodes
of the tree are also known. This is clearly a bad assumption, because we cannot directly observe
the nucleotides that occurred at any point on the tree in the distant past. For now, however, ignore
this fact and bear with me. The probability of observing the configuration of nucleotides at the
tips and interior nodes of the tree in Figure 10.3 is

P(TTCCT,ATCG|τ,v, θ) =
πG pGA(v3) pAT (v1) pAT (v2) pGC(v8) pCT (v6) pCT (v7) pTC(v4) pTC(v5)

Here we show the probability of the observations (TTCCT) and the states at the interior nodes
of the tree (ATCG) conditioned on the tree (τ), branch lengths (v), and other model parameters
(θ). Note that to calculate the probability of the states at the tips of the tree, we used the
stationary probability of the process (π) and also the transition probabilities [pij(v)]. The stationary
probability of the substitution process was used to calculate the probability of the nucleotide at
the root of the tree. In this case, we are assuming that the substitution process has been running
a very long time before it reached the root of our five species tree. We then use the transition
probabilities to calculate the probabilities of observing the states at each end of the branches.
When taking the product of the transition probabilities, we are making the additional assumption
that the substitutions on each branch of the tree are independent of one another. This is probably
a reasonable assumption for real data sets.

The probability of observing the states at the tips of the tree, described above, was conditioned
on the interior nodes of the tree taking specific values (in this case ATCG). To calculate the
unconditional probability of the observed states at the tips of the tree, we sum over all possible
combinations of nucleotide states that can be assigned to the interior nodes of the tree

P(TTCCT |τ,v, θ) =
∑
w

∑
x

∑
y

∑
z

P(TTCCT,wxyz|τ,v, θ)

where w, x, y, z ∈ (A,C,G, T). Averaging the probabilities over all combinations of states at the
interior nodes of the tree accomplishes two things. First, we remove the assumption that the states
at the interior nodes take specific values. Second, because the transition probabilities account for
all of the possible ways we could have state i at one end of a branch and state j at the other, the
probability of the site is also averaged over all possible character histories. Here, we think of a
character history as one realization of changes on the tree that is consistent with the observations
at the tips of the tree. For example, the parsimony method, besides calculating the minimum
number of changes on the tree, also provides a character history; the character history favored by
parsimony is the one that minimizes the number of changes required to explain the data. In the
case of likelihood-based methods, the likelihood accounts for all possible character histories, with
each history weighted by its probability under the substitution model. (Nielsen, 2002) described
a method for sampling character histories in proportion to their probability that relies on the
interpretation of the rate matrix as specifying waiting times between substitutions. His method
provides a means to reconstruct the history of a character that does not inherit the flaws of the
parsimony method. Namely, Nielsen’s method allows multiple changes on a single branch and also
allows for non-parsimonious reconstructions of a character’s history.

Before moving on, we will make two final points. First, in practice no computer program actually
evaluates all combinations of nucleotides that can be assigned to the interior nodes of a tree when

10.2. FOUR EQUIVALENT WAYS TO SIMULATE DNA SEQUENCES ON A TREE 119

Site Prob. Site Prob. Site Prob. Site Prob. Site Prob.

1 0.004025 11 0.029483 21 0.179392 31 0.179392 41 0.003755
2 0.001171 12 0.006853 22 0.001003 32 0.154924 42 0.005373
3 0.008008 13 0.024885 23 0.154924 33 0.007647 43 0.016449
4 0.002041 14 0.154924 24 0.179392 34 0.000936 44 0.029483
5 0.005885 15 0.007647 25 0.005719 35 0.024885 45 0.154924
6 0.000397 16 0.024124 26 0.001676 36 0.000403 46 0.047678
7 0.002802 17 0.154924 27 0.000161 37 0.024124 47 0.010442
8 0.179392 18 0.004000 28 0.154924 38 0.154924 48 0.179392
9 0.024124 19 0.154924 29 0.001171 39 0.011088 49 0.002186
10 0.024885 20 0.004025 30 0.047678 40 0.000161 50 0.154924

Table 10.1: The probabilities of the fifty sites for the example alignment from the text. The
likelihoods are calculated assuming the tree of Figure 10.3 with the branch lengths being v1 = 0.1,
v2 = 0.1, v3 = 0.2, v4 = 0.1, v5 = 0.1, v6 = 0.1, v7 = 0.2, and v8 = 0.1. The substitution model
parameters were also fixed, with κ = 5, πA = 0.4, πC = 0.3, πG = 0.2, and πT = 0.1.

calculating the probability of observing the data at a site. There are simply too many combinations
for trees of even small size. For example, for a tree of 100 species, there are 99 interior nodes and
4.02× 1059 combinations of nucleotides at the ancestral nodes on the tree. Instead, the Felsenstein
(1981) pruning algorithm is used to calculate the likelihood at a site. Felsenstein’s method is
mathematically equivalent to the summation shown above, but can evaluate the likelihood at a site
in a fraction of the time it would take to plow through all combinations of ancestral states. Second,
the overall likelihood of a character matrix is the product of the site likelihoods. If we assume
that the tree of Figure 10.3 is correct (with all of the parameters taking the values specified in the
caption of Table 10.1.2), then the probability of observing the data is

0.004025× 0.001171× 0.008008× . . .× 0.154924 = 1.2316× 10−94

where there are fifty factors, each factor representing the probability of an individual site (column)
in the alignment. Table 10.1.2 shows the probabilities of all fifty sites for the tree of Figure 10.3.
Note that the overall probability of observing the data is a very small number (≈ 10−94). This is
typical of phylogenetic problems and results from the simple fact that many numbers between 0
and 1 are multiplied together. Computers cannot accurately hold very small numbers in memory.
Programmers avoid this problem of computer “underflow” by using the log probability of observing
the data. The log probability of observing the sample alignment of sequences presented earlier
is loge ℓ = loge(1.2316 × 10−94) = −216.234734. The log likelihood can be accurately stored in
computer memory.

10.2 Four equivalent ways to simulate DNA sequences on a tree

In the previous section, we covered some of the most basic assumptions made in a phylogenetic
analysis; DNA sequences are assumed to evolve on a phylogenetic tree (with branch lengths) under
a continuous-time Markov model of DNA substitution. The substitution process is assumed to be
independent across sites. These assumptions apply to maximum likelihood, Bayesian inference,

120 CHAPTER 10. SIMULATING SEQUENCE EVOLUTION ON A TREE

v1 = 0.3 v5 = 0.1

v2 = 0.1 v3 = 0.1

v4 = 0.2

v6 = 0.1

Figure 10.4: We simulate data on this tree. The branch lengths are denoted vi.

and distance methods (when the distances are ‘corrected’ under some evolutionary model). It is
not so clear what assumptions the parsimony method is making (one potential criticism of the
method), but several authors have found interesting connections between the parsimony method
and maximum likelihood under an over-parameterized continuous-time Markov model of DNA
substitution (Tuffley and Steel, 1997). .

In this section, we will test our knowledge obtained in the previous section by simulating DNA
sequences on a phylogenetic tree. Simulation is often used in phylogenetics. Simulation has been
used to elucidate the statistical properties of different phylogenetic methods, and it can be used
to generate the null distribution of a test statistic in phylogenetic hypothesis testing. In other
words, learning to simulate DNA sequences is not a wasted effort. Not only can you strengthen
your intuition of phylogenetic methods, but you may also be able to apply simulation for your own
research.

How exactly should one simulate evolution on a phylogeneitc tree? One basic point is that an
alignment should be simulated on a site-by-site basis. That is, we first simulate the data at the
first site, then the second site, and so on. We can take this approach because of the assumption
of independence of the substitution process across sites; to simulate the data at a particular site
(column in the alignment), we don’t need to know the results of the simulation at any other site.

Another basic point is that we must know all of the parameters of the simulation: we have to
decide on the precise phylogenetic tree on which to simulate the DNA sequences; we need to know
the branch lengths on this tree; and, finally, we must pick a substitution model. The substitution
model is a matrix of rates, specifying the rate of change from one nucleotide to another. In other
words, we are taking a God-like view of the situation. We know everything about the evolutionary
history and process. Of course, in reality we never know everything about how organisms evolved,
but must make strong assumptions about how evolution occurred in order to estimate (make edu-
cated guesses) at the underlying evolutionary history. However, pretending to be a God, even for
a little while, is a great feeling.

In the following, we will evolve DNA sequences on the four-taxon tree shown in Figure 10.4. We
will also assume that DNA substitution occurs according to the HKY85 model with the parameters
fixed to the following values: κ = 5, πA = 0.4, πC = 0.3, πG = 0.2, and πT = 0.1. The rate matrix,

10.2. FOUR EQUIVALENT WAYS TO SIMULATE DNA SEQUENCES ON A TREE 121

then, is

Q = {qij} =


−0.886 0.190 0.633 0.063
0.253 −0.696 0.127 0.316
1.266 0.190 −1.519 0.063
0.253 0.949 0.127 −1.329


Now, we are ready to simulate data on the tree of Figure 10.4. We will go over four different

methods for simulating data, each of which takes advantage of our knowledge of continuous-time
Markov chains.

10.2.1 Method 1

The first method only relies on our ability to generate exponentially distributed random numbers.
If we generate a uniform random number on the interval (0,1), we can generate an exponential
random number (with parameters λ) using the transformation t = − 1

λ loge(u) (where u is the
uniform random number and t is the exponentially distributed random number). The first method
involves an addition to the tree of Figure 10.4 which seems unusual: We take the tree of Figure 10.4,
and add a ‘tail’ to it—a branch that extends for some distance from the root of the tree. In this
case, the branch at the root of the tree is v0 = 10.0 in length. Moreover, we assume that the process
is in state (nucleotide) A at the very root of the tree. The situation we have is like that shown in
Figure 10.5.

We simulate the process starting at the root of the tree. The process is in state A, meaning
that the only relevant row of the rate matrix is the first one:

Q = {qij} =


−0.886 0.190 0.633 0.063

· · · ·
· · · ·
· · · ·


We wait an exponentially distributed amount of time with parameter λ = 0.886 until the next
substitution occurs. When the substitution occurs, it is to a C, G, or T with probabilities 0.190

0.886 =
0.214, 0.633

0.886 = 0.714, and 0.063
0.886 = 0.072, respectively. In the first section, we used this method for

simulating along a single branch of a tree. Here we apply the method with vigor, applying it to
each branch in the tree from the root to the tips. We continue to simulate up the root branch of
the tree until our simulation exceeds the length of the branch. We then record the nucleotide state
the process was in when it exceeded a length of 10. We write this state at the end of the root
branch, where it splits into branches 1 and 6. We then repeat the simulation process for branch
1 and then branch 6, recording the state the process is in at the end of those two branches. We
then concentrate our attention on branches 4 and 5, and then on branches 2 and 3. At the end, we
should have nucleotides at the ends of branches 1, 2, 3, and 4.

One puzzling aspect of this simulation is why we always start the process in nucleotide A, and
why we even bothered to add the tail to the root of the tree. We did this because for Method 1, we
assume ignorance of the stationary distribution of the rate matrix. If this is the case, we can use
our understanding of the rate matrix as specifying waiting times between substitutions to complete
our simulation. Hence, we always start our simulations in a particular nucleotide (in this case we
chose to start in the nucleotide A), and then simulate the process for a long time along the root
(tail) branch of the tree. The hope is that if we make the length of the tail branch long enough,

122 CHAPTER 10. SIMULATING SEQUENCE EVOLUTION ON A TREE

v1 = 0.3 v5 = 0.1

v2 = 0.1 v3 = 0.1

v4 = 0.2

v6 = 0.1

v0 = 10.0

A

Figure 10.5: The tree of Figure 10.4, with a long branch at the root that starts in nucleotide A.

that the process is at stationarity by the time it reaches the first split in the tree (the speciation
event that eventually produces the four species at the tips of the tree).

Method 1 relies on the idea that we can come pretty near to stationarity with a moderately long
branch. We know that the stationary distribution of the HKY85 process of nucleotide substitution
with the specific parameters we chose is πA = 0.4, πC = 0.3, πG = 0.2, πT = 0.1. We also know
that the transition probability for a branch of v = 10.0 is

P(10.0) =


0.401 0.299 0.200 0.099
0.399 0.301 0.199 0.100
0.401 0.299 0.200 0.099
0.399 0.301 0.199 0.100


The transition probability matrix tells us that if we start in nucleotide A, then we end up in state
A, C, G, and T with probabilities 0.401, 0.299, 0.200, and 0.099, respectively. These numbers are
very close to the actual stationary probabilities, so perhaps this method is not such a bad one.

10.2.2 Method 2

The second simulation method we explore is similar to the first one, but we eliminate the long tail
on the tree. Instead of simulating the process along a long branch before we reach the first split
in the tree, we simply decide which nucleotide is at the first split by sampling from the stationary
distribution. We know that the stationary probabilities of the process are πA = 0.4, πC = 0.3,
πG = 0.2, πT = 0.1, so why not simply pick a nucleotide at random with these probabilities?

10.2.3 Method 3

The third simulation method does away with the need to generate exponential random variables.
It takes advantage of our knowledge of the stationary distribution (as does the second method),
but also takes advantage of our ability to calculate transition probabilities. There are only three

10.3. A C++ SIMULATOR 123

different lengths of branches on our model tree (0.1, 0.2, and 0.3). The transition probabilities are

P(0.10) =


0.919 0.018 0.056 0.006
0.024 0.934 0.012 0.029
0.113 0.018 0.863 0.006
0.025 0.086 0.012 0.877

 P(0.20) =


0.851 0.035 0.100 0.011
0.047 0.876 0.023 0.052
0.201 0.035 0.750 0.011
0.047 0.156 0.023 0.771



P(0.30) =


0.795 0.051 0.135 0.017
0.069 0.824 0.034 0.071
0.270 0.051 0.659 0.017
0.069 0.214 0.034 0.681


Instead of drawing exponential random variables, and generating the process continuously across
the entire tree, our simulation jumps from node to node on the tree. First, we generate the
nucleotide at the root of the tree (the first split leading to all four taxa) by drawing from the
stationary distribution. Then, we use the transition probabilities to simulate from one end to the
other of each branch on the tree. We start from the root of the tree, and simulate up the tree to
progressively higher branches until we have simulated a nucleotide at each tip of the tree.

10.2.4 Method 4

The last method we will discuss involves calculating the probability of each possible pattern of
nucleotides that we could observe at the tips of the tree. There are four tips, so there are 44 = 256
possible patterns of nucleotides we could observe. We use the formula for the likelihood, discussed
in the first section, to calculate the probability (likelihood) of each pattern.

We could quickly simulate the data at one site (column) in an alignment by generating one
uniform random number on the interval (0,1). We would first decide which pattern would result
from a particular random number by tabulating 256 intervals. For example, we might decide that
if the uniform random number is between 0 and 0.199465, that the pattern AAAA is the result;
that if the uniform random number is between 0.199465 and 0.20365 that the pattern AAAC
results; that if the uniform random number is between 0.20365 and 0.218361 that the pattern
AAAG results; and so on. These intervals are calculated directly from the numbers in Appendix
1. (If you do not see how this was done, here is a hint: 0.199465 + 0.004185 = 0.20365 and
0.199465 + 0.004185 + 0.014711 = 0.218361.)

This method can work well when the number of tips on the tree is small, keeping the number
of possible patterns manageable. However, when the number of tips gets to be about 8 or 9, the
number of possible patterns becomes too large to make this method a reasonable one for simulating
data.

10.3 A C++ simulator

In order to simulate DNA sequence evolution on a phylogenetic tree, we will need the abilities to
hold a tree in computer memory and to generate pseudorandom numbers. Fortunately, we have
implemented both in earlier chapters. In fact, we will use the code from the previous chapter, in
which we generate a tree under the birth-death process of cladogenesis, as the starting point for
simulating DNA sequences. Make certain that your birth-death project is open.

124 CHAPTER 10. SIMULATING SEQUENCE EVOLUTION ON A TREE

10.3.1 Modifying the Tree class

First, we will add some functionality to our Tree class. We will make two new functions: another
constructor and a function. The new constructor will set up the tree using a string in Newick
format. Add to the header file for the Tree class (Tree.hpp), the following public constructor:

Example

Tree(std::string newickStr);

and the following private function:

Example

std::vector<std::string> parseNewickString(std::string ns);

Now, we need to implement the new constructor and function. In the Tree.cpp file, add the
following code:

Example

Tree::Tree(std::string newickStr) {

// break the string into its component parts

std::vector<std::string> tokens = parseNewickString(newickStr);

}

std::vector<std::string> Tree::parseNewickString(std::string ns) {

std::vector<std::string> tks;

for (int i=0; i<ns.size(); i++)

{

char c = ns[i];

if (c == '(' || c == ')' || c == ',' || c == ':' || c == ';')

10.3. A C++ SIMULATOR 125

{

std::string tempStr;

tempStr = c;

tks.push_back(tempStr);

}

else

{

int j = i;

std::string tempStr = "";

while (!(c == '(' || c == ')' || c == ',' || c == ':' || c == ';'))

{

tempStr += c;

j++;

c = ns[j];

}

i = j-1;

tks.push_back(tempStr);

}

}

if defined(DEBUG_NEWICK_PARSER)

std::cout << "The Newick string, broken into its parts:" << std::endl;

for (int i=0; i<tks.size(); i++)

std::cout << " tks[" << i << "] = \"" << tks[i] << "\"" << std::endl;

endif

return tks;

}

You will need to add,

Example

#define DEBUG_NEWICK_PARSER

near the top of your Tree.cpp file. I would add the #define compiler directive after the #include
directives, but before the actual code in the file. Modify your main function so that it reads:

126 CHAPTER 10. SIMULATING SEQUENCE EVOLUTION ON A TREE

Example

#include <iostream>

#include <string>

#include "RandomVariable.hpp"

#include "Tree.hpp"

int main(int argc, char* argv[]) {

RandomVariable rv;

std::string myTree = "(Taxon_I:0.3,((Taxon_II:0.1,Taxon_III:0.1):0.1,

Taxon_IV:0.2):0.1);";

Tree t(myTree);

return 0;

}

We haven’t completed our implementation of the constructor, but this is a good point to pause.
Check that your code compiles. It should at this point.

What have we done? The basic idea is to construct a tree so that it reflects the topology and
branch lengths depicted in Figure 10.4. We initialize a string in the main function, called myTree

that reflects the information in that tree. Note that I have added taxon names; the names Taxon I,
Taxon II, Taxon III, and Taxon IV should be applied to the tree of Figure 10.4, from left to right.
We then instantiate the tree using the new constructor. We now have three constructors for our
Tree class:

• Tree(void), the default constructor that is implemented in the header file and made private
so that it cannot be called.

• Tree(double lambda, double mu, double duration, RandomVariable* rv), a construc-
tor that sets up the tree under the stochastic birth-death process of cladogenesis.

• Tree(std::string newickStr), a constructor that will eventually set up the tree reflected
in the Newick string that is passed to it. So far, this implementation is incomplete.

Currently, this new constructor does one thing: it calls a function called parseNewickString.
The string that is passed into the constructor contains the information about the tree, but we need
to break it up, isolating the individual components. We will do different things when we build up the
tree in computer memory when we encounter a left parentheses, right parentheses, comma, etc. The
parseNewickString reads the string character-by-character and isolates the various components,
returning the isolated components as a vector of strings. Each element of this vector represents an
individual component of the Newick string.

10.3. A C++ SIMULATOR 127

Parsing is a real pain in the neck. The parseNewickString first declares a vector of strings.
It then enters a loop, incremented by a variable i, that reads the Newick string one character at
a time. If the character is one of the special ones — () , : or ; — it immediately adds the
character to the vector of strings. Otherwise, the character is part of a taxon name or a branch
length. In this case, the parser races ahead to the next special symbol using a new type of loop
(while), incrementing a new counter (j), adding the entire string (taxon name or branch length)
to the vector.

The parser introduces a few new ideas. First of all, you can see in the conditional if statement
that we use two parallel lines. This is read ‘or.’ You can check for several conditions in a if

statement:

• == : is the thing on the left equal to the thing on the right (equal to)

• != : is the thing on the left not equal to the thing on the right (not equal to)

• || : the statement on the left or the statement on the right is true (logical OR)

• && : the statements to the left and to the right are both true (logical AND)

The parser also prints out the vector of isolated elements. It does this from between a compiler
directive:

if defined(DEBUG_NEWICK_PARSER)

endif

It’s possible that we will want to go back to check that we have correctly parsed a string. This
compiler directive allows us to turn on or turn off that bit of code by defining or undefining
DEBUG NEWICK PARSER. When I run the program, I get the following output:

The Newick string, broken into its parts:

tks[0] = "("

tks[1] = "Taxon_I"

tks[2] = ":"

tks[3] = "0.3"

tks[4] = ","

tks[5] = "("

tks[6] = "("

tks[7] = "Taxon_II"

tks[8] = ":"

tks[9] = "0.1"

tks[10] = ","

tks[11] = "Taxon_III"

tks[12] = ":"

tks[13] = "0.1"

tks[14] = ")"

tks[15] = ":"

tks[16] = "0.1"

128 CHAPTER 10. SIMULATING SEQUENCE EVOLUTION ON A TREE

tks[17] = ","

tks[18] = "Taxon_IV"

tks[19] = ":"

tks[20] = "0.2"

tks[21] = ")"

tks[22] = ":"

tks[23] = "0.1"

tks[24] = ")"

tks[25] = ";"

Program ended with exit code: 0

Check that your output looks like this. If so, congratulations! You successfully parsed the Newick
string. Now that you have confirmed that we have successfully parsed the string, turn off the loop
that prints the vector of parsed elements by changing the statement at the top of the file to:

Example

#undef DEBUG_NEWICK_PARSER

Now, the segment of code is not even seen by the compiler.
The complete implementation of our new constructor is shown here:

Example

Tree::Tree(std::string newickStr) {

// break the string into its component parts

std::vector<std::string> tokens = parseNewickString(newickStr);

// build up the tree from the parsed Newick string

bool readingBranchLength = false;

Node* p = NULL;

for (int i=0; i<tokens.size(); i++)

{

std::string token = tokens[i];

//std::cout << token << std::endl;

if (token == "(")

{

// new node

10.3. A C++ SIMULATOR 129

Node* newNode = new Node;

nodes.push_back(newNode);

if (p == NULL)

root = newNode;

else

{

newNode->setAnc(p);

if (p->getLft() == NULL)

p->setLft(newNode);

else

p->setRht(newNode);

}

p = newNode;

}

else if (token == ")" || token == ",")

{

// move down one node

if (p->getAnc() == NULL)

{

std::cout << "Error: We cannot find an expected ancestor" << std::endl;

exit(1);

}

p = p->getAnc();

}

else if (token == ":")

{

// begin reading a branch length

readingBranchLength = true;

}

else if (token == ";")

{

// finished!

if (p != root)

{

std::cout << "Error: We expect to finish at the root node" << std::endl;

exit(1);

}

}

else

{

130 CHAPTER 10. SIMULATING SEQUENCE EVOLUTION ON A TREE

// we have a taxon name or a branch length

if (readingBranchLength == true)

{

double x = stod(token);

p->setBranchLength(x);

readingBranchLength = false;

}

else

{

Node* newNode = new Node;

nodes.push_back(newNode);

newNode->setAnc(p);

if (p->getLft() == NULL)

p->setLft(newNode);

else

p->setRht(newNode);

newNode->setName(token);

p = newNode;

}

}

}

// index the nodes

int ndeIdx = 0;

for (int i=0; i<nodes.size(); i++)

{

if (nodes[i]->getLft() == NULL)

nodes[i]->setIndex(ndeIdx++);

}

for (int i=0; i<nodes.size(); i++)

{

if (nodes[i]->getLft() != NULL)

nodes[i]->setIndex(ndeIdx++);

}

// initialzie the postorder traversal sequence

initializeTraversalOrder();

}

Walk through this code line-by-line. You will see that we have a loop over the parsed elements in

10.3. A C++ SIMULATOR 131

the Newick string. I call these parsed elements token. We do different things depending on the
identity of the token:

• token == "(" — The token is a left parentheses, in which case we add a new node. We also
set up the pointers for this new node and the ancestor of this node, if there is one. The first
time we create a node, three are no other nodes that can be neighbors (to the left, right, or
ancestrally). This first node is the root node.

• token == ")" || token == "," — The token is either a right parentheses or a comma. In
either case, we move to the ancestor of the current point in the tree.

• token == ":" — The token is a colon, which means the next token is a branch length. We
set a bool variable named readingBranchLength to be true.

• token == ";" — The token is a semicolon, in which case we should be finished reading all
of the Newick string elements. The algorithm works such that we should end at the root. We
check that this is true. If it isn’t, we exit the program abruptly. Something is very wrong
with the Newick string that was passed to the constructor.

• If none of the above are true, then the token must be either a taxon name or a branch
length. If it is a taxon name, we add a new node, just as we did when we encountered a left
parentheses, but this time we also add the taxon name information. If the token is a branch
length, we simply set the branch length for the node we are currently pointed at.

After we build up the tree, we index the nodes such that the tips are labeled from 0, 1, . . . , N − 1
and the interior nodes are assigned the indices N,N + 1, Finally, we initialize the postorder
traversal sequence for the tree.

Check that the tree accurately represents the Newick string that was passed in. You can modify
the main function to read:

Example

int main(int argc, char* argv[]) {

RandomVariable rv;

std::string myTree = "(Taxon_I:0.3,((Taxon_II:0.1,Taxon_III:0.1):0.1,Taxon_IV:0.2):0.1);";

Tree t(myTree);

t.listNodes();

std::cout << t.getNewickRepresentation() << std::endl;

return 0;

}

132 CHAPTER 10. SIMULATING SEQUENCE EVOLUTION ON A TREE

If you run the program, you will note that the Newick string representation does not look right.
This is because we begin traversing the tree from the node to the left of the root node. Modify the
getNewickRepresentation function to read:

Example

std::string Tree::getNewickRepresentation(void) {

std::stringstream ss;

if (root->getLft() != NULL && root->getRht() != NULL)

writeTree(root, ss);

else

writeTree(root->getLft(), ss);

std::string newick = ss.str();

return newick;

}

When I run the program, I get the following output:

Node 4 (0x100503780)

Lft: 0x100508e90

Rht: 0x100505c90

Anc: 0x0

Name: ""

Brlen: 0

Time: 0

Node 0 (0x100508e90)

Lft: 0x0

Rht: 0x0

Anc: 0x100503780

Name: "Taxon_I"

Brlen: 0.3

Time: 0

Node 5 (0x100505c90)

Lft: 0x1005043f0

Rht: 0x100503020

Anc: 0x100503780

Name: ""

Brlen: 0.1

Time: 0

Node 6 (0x1005043f0)

Lft: 0x100507300

10.3. A C++ SIMULATOR 133

Rht: 0x100503580

Anc: 0x100505c90

Name: ""

Brlen: 0.1

Time: 0

Node 1 (0x100507300)

Lft: 0x0

Rht: 0x0

Anc: 0x1005043f0

Name: "Taxon_II"

Brlen: 0.1

Time: 0

Node 2 (0x100503580)

Lft: 0x0

Rht: 0x0

Anc: 0x1005043f0

Name: "Taxon_III"

Brlen: 0.1

Time: 0

Node 3 (0x100503020)

Lft: 0x0

Rht: 0x0

Anc: 0x100505c90

Name: "Taxon_IV"

Brlen: 0.2

Time: 0

(Taxon_I:0.30000,((Taxon_II:0.10000,Taxon_III:0.10000):0.10000,Taxon_IV:0.20000):0.10000)

Program ended with exit code: 0

All looks well to me. We have successfully modified our Tree class to make a tree from a Newick
string. Now we need to actually simulate DNA sequences on this tree. Onward! Upward!

10.3.2 Creating the Alignment class

The alignment class will take as input a tree and parameters for the substitution model. It will
create a character matrix, internally, of the sites at the tips of the tree.

We need to create the files for our new Alignment class. Using your IDE, create the new
class, which should result in two files: Alignment.hpp and Alignment.cpp. We will modify the
main function and begin implementing the Alignment class. First, add the following code to the
Alignment header file (Alignment.hpp):

134 CHAPTER 10. SIMULATING SEQUENCE EVOLUTION ON A TREE

Example

#ifndef Alignment_hpp

#define Alignment_hpp

class RandomVariable;

class Tree;

class Alignment {

public:

Alignment(Tree* t, RandomVariable* rv, int ns, double ep[6], double bfp[4]);

private:

void initializeRateMatrix(double ep[6], double bfp[4]);

void scaleRateMatrix(double bfp[4]);

int numSites;

double q[4][4];

};

#endif

Implement the three functions in the Alignment.cpp file. First, add the header information and
the constructor:

Example

#include <iomanip>

#include <iostream>

#include "Alignment.hpp"

#define DEBUG_RATE_MATRIX

Alignment::Alignment(Tree* t, RandomVariable* rv, int ns, double ep[6], double bfp[4]) {

// set the instance variable

numSites = ns;

10.3. A C++ SIMULATOR 135

// initialize and scale the rate matrix

initializeRateMatrix(ep, bfp);

scaleRateMatrix(bfp);

}

The constructor sets a single instance variable (numSites, the length of the DNA sequences to be
simulated) and initializes a matrix, q which is another instance variable of the class and will hold
the substitution rates. The function initializeRateMatrix initializes the rate matrix. It takes
as input the six exchangeability parameters and four base frequency (or stationary probability)
parameters of the general time reversible model of DNA substitution (the GTR model; Tavaré,
1986). The other function, scaleRateMatrix, rescales the substitution rate matrix such that the
average rate of substitution is one.

Make certain to implement the initializeRateMatrix and scaleRateMatrix functions, too.
Here is the code for the initializeRateMatrix function:

Example

void Alignment::initializeRateMatrix(double ep[6], double bfp[4]) {

// the exchangeability parameters in ep are in the

// order A <-> C, A <-> G, A <-> T, C <-> G, C <-> T,

// and G <-> T. The base frequency, or stationary

// probability, parameters are in the order A, C, G, and T.

// set the off-diagonal components

for (int i=0, k=0; i<4; i++)

{

for (int j=i+1; j<4; j++)

{

q[i][j] = ep[k] * bfp[j];

q[j][i] = ep[k] * bfp[i];

k++;

}

}

// set the diagonal components

136 CHAPTER 10. SIMULATING SEQUENCE EVOLUTION ON A TREE

for (int i=0; i<4; i++)

{

double sum = 0.0;

for (int j=0; j<4; j++)

{

if (i != j)

sum += q[i][j];

}

q[i][i] = -sum;

}

if defined(DEBUG_RATE_MATRIX)

std::cout << "Rate matrix before scaling:" << std::endl;

for (int i=0; i<4; i++)

{

for (int j=0; j<4; j++)

{

if (q[i][j] > 0.0)

std::cout << std::fixed << std::setprecision(3) << " " << q[i][j] << " ";

else

std::cout << std::fixed << std::setprecision(3) << q[i][j] << " ";

}

std::cout << std::endl;

}

endif

}

Don’t forget the code for rescaling the rate matrix:

Example

void Alignment::scaleRateMatrix(double bfp[4]) {

// rescale the rate matrix such that the average

// rate of substitution is one

double averageRate = 0.0;

for (int i=0; i<4; i++)

10.3. A C++ SIMULATOR 137

averageRate += -(bfp[i] * q[i][i]);

double scaler = 1.0 / averageRate;

for (int i=0; i<4; i++)

for (int j=0; j<4; j++)

q[i][j] *= scaler;

if defined(DEBUG_RATE_MATRIX)

std::cout << "Rate matrix after scaling:" << std::endl;

for (int i=0; i<4; i++)

{

for (int j=0; j<4; j++)

{

if (q[i][j] > 0.0)

std::cout << std::fixed << std::setprecision(3) << " " << q[i][j] << " ";

else

std::cout << std::fixed << std::setprecision(3) << q[i][j] << " ";

}

std::cout << std::endl;

}

endif

}

Both the initializeRateMatrix and scaleRateMatrix functions have nicely-formatted debugging
statements behind a compiler directive. The debugging can be turned on or off by defining (define)
or undefining (undef) the DEBUG RATE MATRIX constant.

We want to test what we have written so far. Go to the file main.cpp and modify the code in
that file to read:

Example

#include <iostream>

#include <string>

#include "Alignment.hpp"

#include "RandomVariable.hpp"

#include "Tree.hpp"

138 CHAPTER 10. SIMULATING SEQUENCE EVOLUTION ON A TREE

int main(int argc, char* argv[]) {

// instantiate the random number generator

RandomVariable rv;

// set the parameters of the simulation

int numSites = 100;

std::string myTree = "(Taxon_I:0.3,((Taxon_II:0.1,Taxon_III:0.1):

0.1,Taxon_IV:0.2):0.1);";

double exchangabilityParms[6] = { 1.0, 5.0, 1.0, 1.0, 5.0, 1.0 };

double baseFrequencyParms[4] = { 0.4, 0.3, 0.2, 0.1 };

// instantiate the tree and alignment objects

Tree t(myTree);

Alignment myAlignment(&t, &rv, numSites, exchangabilityParms, baseFrequencyParms);

return 0;

}

Compile and run the code. I get the output:

Rate matrix before scaling:

-1.400 0.300 1.000 0.100

0.400 -1.100 0.200 0.500

2.000 0.300 -2.400 0.100

0.400 1.500 0.200 -2.100

Rate matrix after scaling:

-0.886 0.190 0.633 0.063

0.253 -0.696 0.127 0.316

1.266 0.190 -1.519 0.063

0.253 0.949 0.127 -1.329

Program ended with exit code: 0

Note that the last 4 × 4 matrix that is printed is identical to the rate matrix that we used to
illustrate DNA simulation earlier in the chapter. That rate matrix was specified under the HKY85
model

Q = {qij} =


− πC κπG πT
πA − πG κπT
κπA πC − πT
πA κπC πG −

µ

10.3. A C++ SIMULATOR 139

with parameter values: κ = 5, πA = 0.4, πC = 0.3, πG = 0.2, and πT = 0.1. Our program will
simulate DNA sequences under the more general GTR model, that has rate matrix

Q = {qij} =


− rACπC rAGπG rATπT

rACπA − rCGπG rCTπT
rAGπA rCGπC − rGTπT
rATπA rCTπC rGTπG −

µ

The parameters of the GTR model are divided into the exchangeability parameters and base fre-
quency parameters, r = (rAC , rAG, rAT , rCG, rCT , rGT) and π = (πA, πC , πG, πT), respectively. In
the main function we initialize the exchangeability and base frequency parameters to be equal to:

r = (1, 5, 1, 1, 5, 1)

π = (0.4, 0.3, 0.2, 0.1)

Can you see why our choice for the GTR parameters is equivalent to the parameterization of the
HKY85 model we used earlier?

We will simulate the DNA sequences one site at a time. We begin at the root and visit the
other nodes in preorder (i.e., from the root to the tips). When we visit a node, we can be assured
that we know the nucleotide state of its ancestor. We will then simulate the DNA sequences one
branch at a time.

We will make another incremental change to the new constructor. Modify your code so the
constructor reads:

Example

Alignment::Alignment(Tree* t, RandomVariable* rv, int ns, double ep[6], double bfp[4]) {

// set the instance variable

numSites = ns;

// initialize and scale the rate matrix

initializeRateMatrix(ep, bfp);

scaleRateMatrix(bfp);

// get the traversal order of the nodes for the tree

std::vector<Node*> traversalSequence = t->getTraversalOrder();

// allocate enough memory to hold the DNA sequences for each node in the tree

int** nodeSequences = new int*[traversalSequence.size()];

nodeSequences[0] = new int[traversalSequence.size() * numSites];

for (int i=1; i<traversalSequence.size(); i++)

nodeSequences[i] = nodeSequences[i-1] + numSites;

140 CHAPTER 10. SIMULATING SEQUENCE EVOLUTION ON A TREE

for (int i=0; i<traversalSequence.size(); i++)

for (int j=0; j<numSites; j++)

nodeSequences[i][j] = 0;

// loop over the sites

for (int c=0; c<numSites; c++)

{

// traverse the nodes in preorder, simulating along each branch

for (int n=(int)traversalSequence.size()-1; n>=0; n--)

{

}

}

// allocate a matrix for just the tip nodes and fill it in

// free the memory that was allocated

delete [] nodeSequences[0];

delete [] nodeSequences;

}

As before, we initialize the numSites instance variable and set up the rate matrix, q. Now,
however, we do several new things. First, we get from the tree its postorder traversal sequence.
The vector we obtained a reference to not only contains the memory addresses of the nodes in the
correct order (so we can traverse the tree in post- or preorder) but we now know how many nodes
there are in the tree. The next portion of the code is likely to be confusing.

We dynamically allocate memory that can be accessed as a matrix, with two sets of square
brackets. We want to be able to quickly find the nucleotide assigned to any node in the tree (after
the simulation is complete). For example, if we wanted to access the nucleotide for node 5 and site
4904, we should be able to do something like,

int nuc = nodeSequences[5][4904];

The problem is that we cannot dynamically allocate the memory for a matrix. Rather, all we can
allocate is an array (vector). Keep in mind that the new function returns the memory address of
the first element of the array. In this segment of code, we first allocate a vector of int pointers
(int*). You can see that we allocate an array of int* by looking at the segment of code new

int*[<number of nodes>]. The new function must return a pointer to the first element. Because
the elements we just allocated are all int*, we must declare a variable of type int** to hold the
memory address. The next thing we do is allocate enough int variables to hold the entire matrix.
The size will be the number of nodes times the sequence length. Because we are allocating an

10.3. A C++ SIMULATOR 141

array of int variables, the new function will return a pointer to the first element; the return type
is int*. We then initialize the remaining values setting up the matrix. Figure 10.6 illustrates this
the general idea, showing visually how the two calls to the new function can act together to allocate
memory that can be accessed as if it were a matrix.

The two calls to new in which memory was allocated are matched, in reverse order, at the end
of the constructor where the memory is freed.

The guts of the simulation will occur in the nested loops. One of the loops is over sites and
the other over the nodes of the tree. Note that we will be visiting the elements of the postorder
traversal sequence in reverse order. This is equivalent to visiting the nodes in preorder (from the
root to the tips of the tree).

Now that we have a way to remember the nucleotides (A, C, G, or T) that are assigned to the
nodes of the tree, let’s complete the simulation. Enter the following code segment in the appropriate
place in the constructor:

int** x = new int*[3];

x[0]

x[1]

x[2]

x[0] = new int[3 * 5];

x[0][0]

x[0][1]

x[0][2]

x[0][3]

x[0][4]

x[1][0]

x[1][1]

x[1][2]

x[1][3]

x[1][4]

x[2][0]

x[2][1]

x[2][2]

x[2][3]

x[2][4]

Figure 10.6: An example of how a 3 × 5 matrix can be dynamically allocated. The new function
must be called twice.

142 CHAPTER 10. SIMULATING SEQUENCE EVOLUTION ON A TREE

Simulating sequences in the Alignment constructor

// loop over the sites

10.3. A C++ SIMULATOR 143

for (int c=0; c<numSites; c++)

{

// traverse the nodes in preorder, simulating along each branch

for (int n=(int)traversalSequence.size()-1; n>=0; n--)

{

Node* p = traversalSequence[n];

if (p->getAnc() == NULL)

{

// we are at the root of the tree

double u = rv->uniformRv(), sum = 0.0;

for (int i=0; i<4; i++)

{

sum += bfp[i];

if (u < sum)

{

nodeSequences[p->getIndex()][c] = i;

break;

}

}

}

else

{

// we are at an internal node or a tip

int curNuc = nodeSequences[p->getAnc()->getIndex()][c];

double duration = p->getBranchLength();

double t = 0.0;

while (t < duration)

{

double rate = -q[curNuc][curNuc];

t += rv->exponentialRv(rate);

if (t < duration)

{

// we have a change...what kind is it?

double u = rv->uniformRv(), sum = 0.0;

for (int j=0; j<4; j++)

{

if (j != curNuc)

{

sum += q[curNuc][j] / rate;

if (u < sum)

144 CHAPTER 10. SIMULATING SEQUENCE EVOLUTION ON A TREE

{

curNuc = j;

break;

}

}

}

}

}

nodeSequences[p->getIndex()][c] = curNuc;

}

}

}

You should include the Tree, Node, and RandomVariable header files in this file because we
make use of functionality from all of those classes. The method we use to simulate is very similar
to, if not identical to, the heart of the simulation engine we used for the birth-death process. We
start the simulation at one end of the branch. We continue until the simulation time has exceeded
the branch length. We use the rate matrix to parameterize the exponential distribution that
determines how long the process waits between substitutions and also to calculate the probabilities
of the various types of changes when the process experiences a change.

At this point, we have completed the simulation. Unfortunately, we have no way to visualize
the results. Let’s do that next by completing the implementation of the Alignment constructor.
First, add to the header file (Alignment.hpp) three instance variables

A few more instance variables...

int numTaxa;

int** matrix;

std::vector<std::string> names;

and a destructor and a print function:

... and a little more functionality in the Alignment class

10.3. A C++ SIMULATOR 145

~Alignment(void);

void print(void);

After doing this, your header file for the Alignment class should look like:

Alignment.hpp

#ifndef Alignment_hpp

#define Alignment_hpp

#include <vector>

#include <string>

class RandomVariable;

class Tree;

class Alignment {

public:

Alignment(Tree* t, RandomVariable* rv, int ns,

double ep[6], double bfp[4]);

~Alignment(void);

void print(void);

private:

void initializeRateMatrix(double ep[6], double bfp[4]);

void scaleRateMatrix(double bfp[4]);

int numTaxa;

int numSites;

double q[4][4];

int** matrix;

std::vector<std::string> names;

};

#endif

Now that you have completed the modification to the header file, enter the following code to the
constructor at the correct position in the code:

146 CHAPTER 10. SIMULATING SEQUENCE EVOLUTION ON A TREE

Dynamically allocating a matrix in the constructor

// allocate a matrix for just the tip nodes and fill it in

numTaxa = 0;

for (int i=0; i<traversalSequence.size(); i++)

{

if (traversalSequence[i]->getLft() == NULL)

numTaxa++;

}

matrix = new int*[numTaxa];

matrix[0] = new int[numTaxa * numSites];

for (int i=1; i<numTaxa; i++)

matrix[i] = matrix[i-1] + numSites;

for (int i=0; i<numTaxa; i++)

for (int j=0; j<numSites; j++)

matrix[i][j] = 0;

for (int n=0; n<traversalSequence.size(); n++)

{

Node* p = traversalSequence[n];

if (p->getLft() == NULL)

{

names.push_back(p->getName());

int idx = p->getIndex();

for (int c=0; c<numSites; c++)

matrix[idx][c] = nodeSequences[idx][c];

}

}

Don’t forget to implement the destructor, that simply deletes the matrix instance variable:

Never forget the destructor!

Alignment::~Alignment(void) {

delete [] matrix[0];

delete [] matrix;

10.3. A C++ SIMULATOR 147

}

The last part is to implement the print function. Do that now by adding the following code to
your implementation file (Alignment.cpp):

In case you want to see the alignment...

void Alignment::print(void) {

// get length of longest name

int length = 0;

for (int i=0; i<names.size(); i++)

{

if (names[i].size() > length)

length = (int)names[i].size();

}

// print the alignment

for (int i=0; i<numTaxa; i++)

{

std::cout << " " << names[i];

for (int j=0; j<length-names[i].size(); j++)

std::cout << " ";

std::cout << " ";

for (int j=0; j<numSites; j++)

std::cout << matrix[i][j];

std::cout << std::endl;

}

}

Before you compile and run the program, add a statement that will print the matrix in the
main function,

148 CHAPTER 10. SIMULATING SEQUENCE EVOLUTION ON A TREE

Using the Alignment print function

myAlignment.print();

When I ran the program, I saw the following output:

Rate matrix before scaling:

-1.400 0.300 1.000 0.100

0.400 -1.100 0.200 0.500

2.000 0.300 -2.400 0.100

0.400 1.500 0.200 -2.100

Rate matrix after scaling:

-0.886 0.190 0.633 0.063

0.253 -0.696 0.127 0.316

1.266 0.190 -1.519 0.063

0.253 0.949 0.127 -1.329

Taxon_I 10100213021022001001332000010...310030223101120210001202020111020222202313202102312

Taxon_II 20101013201020201103030000010...312033023121120130220201020101000222222333001130202

Taxon_III 32101013221022001101032000010...310031023121120130021203020131000202202313001112311

Taxon_IV 30101010201020021101002200010...110033220121100130221002220131000222220113201132312

Program ended with exit code: 0

Hmmm. No As, Cs, Gs, or Ts. Only 0s, 1s, 2s, and 3s. Let’s make one more change to the code.
First, add a function to the Alignment implementation file:

Converting to nucleotide characters

char Alignment::convertIndexToNucleotide(int x) {

char nucs[4] = { 'A', 'C', 'G', 'T' };

return nucs[x];

}

Don’t forget to add the function profile in the header file. I would declare it as protected. Now
that this little function has been implemented, modify one line of the print function to read:

10.3. A C++ SIMULATOR 149

Modify the print function in a small way

std::cout << convertIndexToNucleotide(matrix[i][j]);

While you are at it, you might as well turn off the debugging statements for the rate matrix. When
I run the program with this slight modification, I get:

Taxon_I TTTAAAACACGCGGCGAAAGACGAGACCA...TCCGCCCTACAACCCGGAGGGAAAACCGAAATCGGCGGC

Taxon_II TATCAAGTACACCACCAACGAGGGGACCA...TCCGCCCTCCAGCCCCAAAAAAAAACCGGAATCAACCGT

Taxon_III TATCGAGTGCTCCACCAGTGAGGGGACCA...TCCGCCCTACAGCCCAAGGCAAAGACCGGAATCAACCGT

Taxon_IV TCTCAAGCAAACCGCCAAAGAAGGAATAA...TCCGCCCCGGAGCCCCGAAAGAAAACCGGAATAAACGGT

Program ended with exit code: 0

This looks more like it: An alignment of nucleotide sequences!

10.3.3 Using PAUP* to analyze the data

Simulation is a very useful tool. Minimally, you can use this skill going forward to help yourself
to understand complicated models. When reading a paper describing a model that is particularly
important to you or your research program, you can attempt to simulate under the described
process. It is quite difficult to be completely oblivious to the theory while at the same time
successfully simulating the process. You can also use simulation to explore the behavior of other
methods, which is the point of this section.

We will generate alignments under a known tree and ask how well various phylogenetic methods
estimate the correct tree. This sort of exercise has a long history in the field, going back to xxx.
Here, we will simulate DNA sequence evolution on the following five-species tree,

(((A,0.4,B:0.4):0.01,(C,0.4,D:0.4):0.01):0.2,E:0.61)

which is also depicted in Figure ??. Although you now know how to simulate continuous-time
Markov models of arbitrary complexity, we’ll use the simplest model of DNA substitution described
by Jukes and Cantor (1969). The complicated part of this program will be generating properly-
formatted output files that can be read by the program PAUP* (Swofford, 1998) to analyze the
simulated alignments. We will use PAUP* not only to find the best tree under the parsimony
criterion but to compare the estimated results to the true tree.

10.3.4 How well do alternative methods work?

We will output our simulated alignments to a text file, formatted in such a way that PAUP*, and
several other phylogenetic programs, can read. We will start by adding an alternative print function
to our Alignment class. Modify the Alignment.hpp file, adding the overloaded print function:

150 CHAPTER 10. SIMULATING SEQUENCE EVOLUTION ON A TREE

Adding an alternative print function

void print(void);

void print(std::ofstream& fout);

You will also need to include the fstream header to the Alignment.hpp file. The implementa-
tion of the file is

Part II

Part 2. Estimating Phylogeny Using
Bayesian Inference

151

Chapter 11

Introduction to Bayesian Estimation
of Phylogeny

11.1 The Basics of Bayesian phylogenetics

The goal of this next section of the book is to write, from soup to nuts, a program that estimates
phylogeny in a Bayesian framework. This will take quite a bit of work, and the writing of this
program will be spread out over several chapters, which will start with overall design considerations
and end with details on how to implement various components of the program. However, before
even beginning to design the program, we need to have some idea of what we are attempting to do!
We need to have some modicum of knowledge of Bayesian estimation and phylogenetics before we
can even start. So, let’s start with the theory.

How does Bayesian phylogeny estimation work? Bayesian statisticians care about the posterior
probabilities of parameters. If you give a Bayesian statistician the posterior probability distribution
of the parameter, he or she is good to go and can produce estimates of the parameter as well as
statements about the uncertainty of the parameter. With a little more work, this statistician can
even tell you whether one statistical model is better than another.

The first step of a Bayesian statistical analysis of phylogeny is to calculate the posterior prob-
abilities of all the possible trees. Here, we imagine that the trees are all labeled, perhaps using
the Greek letters, τ1, τ2, . . . , τB(N). We use Greek letters where ever possible when referring to the
components of a model because they make even simple equations look much more sophisticated and
‘mathy.’ The function B(N) is the number of possible trees for N species. The posterior probability
of the ith tree is obtained using Bayes’ theorem as

f(τi|X) =
f(X|τi)f(τi)

f(X)

Bayesian statisticians likely care about other things, like family and country, but they mostly care about posterior
probabilities.

153

154 CHAPTER 11. INTRODUCTION TO BAYESIAN ESTIMATION OF PHYLOGENY

which is composed of several parts:

X → Alignment of DNA sequences

τi → The ith tree topology

f(X|τi) → The likelihood of the ith tree

f(τi) → The prior probability of the ith tree

f(X) → The marginal likelihood

Let’s discuss each of these components in turn.

11.2 Alignment, X

We will assume that the input for the program is an alignment of DNA sequences. The types of
data that could, in principle, be read into a program of the sort we are writing includes DNA,
RNA, amino acid, continuous measurements, and morphological discrete state character matrices.
By concentrating only on DNA sequences we simplify our life quite a bit, but also restrict the
generality of the program we write.

We have to make a couple of decisions when reading the data. For one, we have to decide what
data format we want to support. Should we support a standard file format used by many other
programs, such as the NEXUS, Phylip, or fasta formats, or create our own format that will be
readable only by our program? Supporting other file formats can mean more work on our part
(which sucks), but can help our potential users tremendously; our users won’t have to convert their
data into a format readable by our program, after all. On the other hand, it can be quite satisfying
to force the field to your will, making potentially thousands of scientists diligently do your bidding
by meticulously coding their hard-earned data in our obscure file format. “Bwahaha,” you cackle,
“You will all do my bidding!”

We will be kind to our users by supporting multiple and widely-used file formats. Here, I will
show you how to support multiple file formats using a library, in this case the Nexus Class Library
(NCL, Lewis, 2003).

We assume that the homology of the alignment has been established. First, we assume that the
biologist who assembled the alignment included only orthologous DNA sequences. Orthology is a
flavor of homology in which the divergence events between all pair-wise comparisons of sequences in
the alignment were caused by speciation events that occurred in the past. Because we are interested
in reconstructing the history of speciation events in the past that led to the species of interest, we
need to make certain that the sequences in the alignment are all orthologous to one another. Other
types of homology include paralogy in which the similarity in the sequences was caused by gene
duplication and xenology in which the similarity is caused by horizontal gene transfer.

Not only must the sequences be orthologous to one another, but we also assume that the fine-
scale homology of the individual nucleotides in the sequences has been established. The fine-scale
homology of sequences is established using alignment programs. Note that the alignment that is
produced by these programs is itself an inference. Our software, and the Bayesian method too,
however, assume that the alignment is an observation (or known without error). If you think about
it, this makes sense; of course alignments are inferences and not observations. When was the last
time you were walking along the beach, looked down, and saw an alignment?

11.3. TREE TOPOLOGY, τ 155

The sequence alignment is denoted by the matrix X, where the i-th row of the matrix contains
the sequence information for the i-th species and the columns contain the nucleotide information
for the j-th site. As an example of an alignment, consider the first 21 sites of an alignment of
cytochrome oxidase I sequences from N = 10 vertebrates (Cummings et al., 1995),

Cow ATG---TTCATTAACCGCTGA. . .
Carp GTGGCA---ATCACGCGCTGA. . .
Chicken GTGACCTTCATCAACCGATGA. . .
Human ATG---TTCGCCGACCGTTGA. . .
Loach GTGGCA---ATCACGCGCTGA. . .
Mouse ATG---TTCATTAATCGTTGA. . .
Rat ATG---TTCGTAAACCGTTGA. . .
Seal ATG---TTCATAAATCGATGG. . .
Whale ATG---TTCATAAACCGCTGA. . .
Xenopus ATGGCA---ATTACTCGTTGA. . .

where the gaps, caused by insertion or deletion (indel) events that have become fixed in a species,
are indicated by a dash, ‘−’. The gaps were inserted by the alignment program. Each ver-
tebrate sequence from the example has S = 1560 sites. The information for the j-th site is
denoted xj . For example, the information for the first three positions of the example align-
ment, above, are x1 = (A,G,G,A,G,A,A,A,A,A)′, x2 = (T, T, T, T, T, T, T, T, T, T)′, and x3 =
(G,G,G,G,G,G,G,G,G,G)′. The entire alignment can be denoted X = (x1,x2, . . . ,xS). This
may seem like unnecessary detail just to describe an alignment, but it will become important later
when we discuss calculating the likelihood. Besides making the overall problem seem much more
sophisticated, just like using Greek letters did, being careful with notation and variable names can
clarify the steps needed to do the computations. So, ‘Yay’ for math notation!

11.3 Tree Topology, τ

We have dealt with trees in earlier chapters, so you would think there wouldn’t be much more to
say about them. Trees are complicated beasts. For one, trees can be rooted or unrooted. Figure ??
shows an example of both types. This distinction is important. Our trees will always be rooted in
computer memory. However, we need to be careful about how we report trees to users because the
usual models we use to calculate the likelihood are time-reversible, which means the data/model
have nothing to say about the root position of the tree unless some secondary criterion, such as
the outgroup criterion, is applied. We want to make it as easy as possible for the user to know and
understand whether the tree (or trees) our program produces are rooted or unrooted.

Ultimately, the evolutionary biologist is interested in rooted trees. The Tree of Life, after all,
has a direction in time. Unrooted trees constrain relationship, but are not a final statement about
phylogeny.

The combinatorics of trees is the most mind boggling part of the phylogeny problem. Table
?? shows the number of possible rooted and unrooted trees up to N = 20 species. The number of
possible trees appears to increase quite rapidly with N . In fact, the number of possible unrooted
trees for N species is (2N − 5)!!. The corresponding number for rooted trees is (2N − 3)!! The
double factorial symbol is likely new to you and I use it here mostly to impress and dazzle. But, it

156 CHAPTER 11. INTRODUCTION TO BAYESIAN ESTIMATION OF PHYLOGENY

is a little-used notation that indicates taking the product of every other number, so (2N − 5)!! =
1× 3× 5× . . .× (2N − 5).

One last thing about trees that is relevant to our program: the branches on a tree have lengths.
Ideally, the branch lengths would be in terms of time, perhaps in units of millions of years. The
speciation events that occurred in the past to produce the tree, after all, occurred as specific times.
Unfortunately, for technical reasons related to the parameterization of the model (to be discussed
in more detail later in this chapter), it is difficult to impossible to disentangle the rate at which
DNA substitutions occur along the branches of the tree from time. More typically in phylogenetic
analsyis, the branch lengths are in terms of expected number of character changes per character.
For our program in which we will analyze DNA sequences, the branch lengths would be in terms of
expected number of nucleotide substitutions per site. The branch length, ν (another Greek letter,
this time lower case nu), is the product or substitution rate and time: ν = u× t.

11.4 Likelihood Function, f(X|τi)

As pointed out, above, to calculate the posterior probability of a tree, we need to calculate the
likelihood. The likelihood is simply the probability of the observations, in this case an alignment
of DNA sequences (denoted X), conditional on the parameter(s) of the model. The likelihood of
the ith tree is denoted f(X|τi). I would love to be able to calculate the likelihood conditioned
only on the tree topology, τ·, but except for a few weird parameterizations of models of substitution
(Huelsenbeck et al., 2008), one also needs to specify the branch lengths of the tree, which for the ith
topology are denoted νi = (ν1, ν2, . . . , ν2N−3, where N is the number of taxa in the unrooted tree).
The likelihood function, then, should be amended to be f(X|τi, νi). Because the branch lengths
are dependent on a particular topology, people will sometimes use a notation that wraps up both,
Ψi = (τi, νi), so the likelihood function would be f(X|Ψi).

A likelihood function that is dependent on only the topology and branch lengths would be
sufficient for the simplest model of DNA substitution described by Jukes and Cantor (1969), which
has no parameters. However, most biologists want to account for the vagaries of the nucleotide
substition process, which the Jukes and Cantor (1969) model does not as it assumes the rates of
change between all pairs of nucleotides is equal. Patterns that molecular evolutionists are interested
in accounting for include transition/transversion biases (which introduces a parameter κ to the
likelihood function), rate variation across sites (with parameter α), differences in the nucleotide
frequencies (with parameter π), and so on. In other words, a phylogenetic analysis contains a
lot of parameters besides the tree and branch lengths! Our goal: to calculate the joint posterior
probability distribution of them all. The notation could become unwieldy depending on how many
parameters the biologist introduces. I adopt the convention of shoving all of the substitution
parameters into a single parameter, θ. For various substitution models, θ would contain,

Model Parameters Citation

JC69 θ = ∅ Jukes and Cantor (1969)
K80 θ = (κ) Kimura (1980)
HKY85 θ = (κ, πA, πC , πG, πT) Hasegawa et al. (1984, 1985)
TN93 θ = (κ1, κ2, πA, πC , πG, πT) Tamura and Nei (1993)
GTR θ = (rAC , rAG, rAT , rCG, rCT , rGT , πA, πC , πG, πT) Tavaré (1986)

11.5. PRIOR, F (τI) 157

and the likelihood function is simply f(X|Ψi, θ).
The table listed only five models. However, anyone familiar with the field knows that I could

have expanded the list dramatically. One of the confusing aspsect of the field to the outsider
is the confusing array of models that could be applied to any analysis. As will be pointed out
later, however, all of the models we use in statistical phylogenetics are variations of continuous-
time Markov models. We write code that allows our program to calculate likelihoods under any
subsitution model.

The details of calculating the likelihood will be deferred until we discuss this in a latter chapter.
Computing the likelihood is computationally expensive and the algorithm for doing so is one of the
many reasons J. Felsenstein is famous (Felsenstein, 1981).

11.5 Prior, f(τi)

A prior probability distribution describes the scientist’s beliefs about a parameter before the data
were collected. The moment you include a prior distribution in the statistical analysis with the
goal of calculate the posterior probability of the parameter, you become a card-carrying Bayesian
statistician.

158 CHAPTER 11. INTRODUCTION TO BAYESIAN ESTIMATION OF PHYLOGENY

Contents

159

160 CONTENTS

Appendices

161

Appendix A

Random Variable Class

main.cpp file from Chapter 6.6

#include <iomanip>

#include <iostream>

#include "RandomVariable.hpp"

int main(int argc, const char * argv[]) {

// instantiate the RandomVariable class

RandomVariable rv;

/* Generate uniform(a,b) random variables. Note

that the mean of a uniform(a,b) distribution is

0.5 * (a + b) and the variance is (1/12) * (b-a) * (b-a) */

int numUniforms = 10000;

double a = 0.0, aOld = 0.0, s = 0.0;

for (int i=0; i<numUniforms; i++)

{

double u = rv.uniformRv();

if (i == 0)

{

a = u;

s = 0.0;

}

else

{

aOld = a;

a = aOld + (u - aOld) / (i+1);

163

164 APPENDIX A. RANDOM VARIABLE CLASS

s = s + (u - aOld) * (u - aOld);

}

}

double mean = a;

double variance = 0.0;

if (numUniforms > 1)

variance = s / (numUniforms - 1);

std::cout << std::fixed << std::setprecision(3);

std::cout << "Results for " << numUniforms << " uniform(0,1) random variables" << std::endl;

std::cout << " Mean: " << mean << " (Expected=" << 0.5 << ")" << std::endl;

std::cout << " Variance: " << variance << " (Expected=" << (1.0/12.0) << ")" << std::endl;

/* Generate exponential(lambda) random variables. Note

that the mean of an exponential(lambda) distribution is

1.0/lambda and the variance is 1.0/(lambda*lambda). */

int numExponentials = 10000;

double lambda = 10.0;

a = 0.0;

aOld = 0.0;

s = 0.0;

for (int i=0; i<numExponentials; i++)

{

double u = rv.exponentialRv(lambda);

if (i == 0)

{

a = u;

s = 0.0;

}

else

{

aOld = a;

a = aOld + (u - aOld) / (i+1);

s = s + (u - aOld) * (u - aOld);

}

}

mean = a;

variance = 0.0;

if (numUniforms > 1)

variance = s / (numExponentials - 1);

std::cout << "Results for " << numExponentials << " exponential(" << lambda << ") random variables" << std::endl;

std::cout << " Mean: " << mean << " (Expected=" << 1.0/lambda << ")" << std::endl;

std::cout << " Variance: " << variance << " (Expected=" << 1.0/(lambda*lambda) << ")" << std::endl;

165

return 0;

}

RandomVariable.hpp file from Chapter 6.6

#ifndef RandomVariable_hpp

#define RandomVariable_hpp

class RandomVariable {

public:

RandomVariable(void);

RandomVariable(int x);

double exponentialRv(double lambda);

double uniformRv(void);

double uniformRv(double lower, double upper);

protected:

int seed;

};

#endif

RandomVariable.cpp file from Chapter 6.6

#include <cmath>

#include <ctime>

#include <iostream>

#include "RandomVariable.hpp"

RandomVariable::RandomVariable(void) {

seed = (int)time(NULL);

}

RandomVariable::RandomVariable(int x) {

166 APPENDIX A. RANDOM VARIABLE CLASS

seed = x;

}

double RandomVariable::exponentialRv(double lambda) {

return -log(uniformRv()) / lambda;

}

double RandomVariable::uniformRv(void) {

int hi = seed / 127773;

int lo = seed % 127773;

int test = 16807 * lo - 2836 * hi;

if (test > 0)

seed = test;

else

seed = test + 2147483647;

return (double)(seed) / (double)2147483647;

}

double RandomVariable::uniformRv(double lower, double upper) {

return 0.0;

}

Appendix B

MCMC Coin Tossing Program

main.cpp file from Chapter 7.4

#include <cmath>

#include <iomanip>

#include <iostream>

#include "RandomVariable.hpp"

int main(int argc, char* argv[]) {

// instantiate an object for generating random numbers

RandomVariable rv;

// this user-interface sucks!

int numTosses = 100;

int numHeads = 43;

int numTails = numTosses - numHeads;

int chainLength = 1000000;

int printFrequency = 1000;

int sampleFrequency = 1;

double window = 0.1;

// initialize theta to some value

double theta = rv.uniformRv();

// run the Markov chain

int bins[100]; // here we set up a vector of ints to

for (int i=0; i<100; i++) // keep track of how often each between

bins[i] = 0; // interval 0 and 1 was visited

167

168 APPENDIX B. MCMC COIN TOSSING PROGRAM

int numSamples = 0;

for (int n=1; n<=chainLength; n++)

{

// propose a new value for theta using a sliding window

// proposal mechanism

double thetaPrime = theta + (rv.uniformRv() - 0.5) * window;

if (thetaPrime < 0.0)

thetaPrime = -thetaPrime;

else if (thetaPrime > 1.0)

thetaPrime = 2.0 - thetaPrime;

// calculate the probability of accepting thetaPrime as

// the next state of the chain

double lnLikelihoodRatio = (numHeads*log(thetaPrime) + numTails*log(1.0-thetaPrime)) -

(numHeads*log(theta) + numTails*log(1.0-theta));

double lnPriorRatio = 0.0; // natural log of 1.0

double lnHastingsRatio = 0.0; // natural log of 1.0

double lnR = lnLikelihoodRatio + lnPriorRatio + lnHastingsRatio;

double R = 0.0;

if (lnR < -300.0) // we go through this rigamarole to avoid underflow

R = 0.0; // when we exponentiate lnR

else if (lnR > 0.0)

R = 1.0;

else

R = exp(lnR);

// print (part 1)

if (n % printFrequency == 0)

{

std::cout << std::setw(5) << n << " -- ";

std::cout << std::fixed << std::setprecision(3) << theta << " -> ";

std::cout << std::fixed << std::setprecision(3) << thetaPrime << " ";

}

// accept or reject thetaPrime, and update the state of the chain

double u = rv.uniformRv();

bool isAccepted = false;

if (u < R)

{

theta = thetaPrime;

isAccepted = true;

}

// print (part 2)

if (n % printFrequency == 0)

169

{

if (isAccepted == true)

std::cout << "(Accepted)";

else

std::cout << "(Rejected)";

std::cout << std::endl;

}

// sample the chain

if (n % sampleFrequency == 0)

{ // note that when we cast theta*100.0,

numSamples++; // which is a number between 0.000...001

bins[(int)(theta*100.0)]++; // and 99.9999...999, we lose the decimal

} // portion (i.e., 99.99999 goes to 99)

}

// summarize the results

double cumulativeProbability = 0.0;

for (int i=0; i<100; i++)

{

double intervalProbability = (double)bins[i] / numSamples;

cumulativeProbability += intervalProbability;

std::cout << std::fixed << std::setprecision(2);

std::cout << i * 0.01 << " - " << (i+1) * 0.01 << " -- ";

std::cout << std::setw(5) << bins[i] << " ";

std::cout << std::fixed << std::setprecision(3);

std::cout << intervalProbability << " ";

std::cout << cumulativeProbability << " ";

std::cout << std::endl;

}

return 0;

}

170 APPENDIX B. MCMC COIN TOSSING PROGRAM

Appendix C

A Simple Tree

main.cpp file from Chapter 8.4

#include <iostream>

#include "Node.hpp"

#include "Tree.hpp"

int main(int argc, char* argv[]) {

// instantiate the tree

Tree t;

// list the nodes

t.listNodes();

// get the postorder node sequence

std::vector<Node*> postOrd = t.getTraversalOrder();

// print the nodes in postorder

std::cout << "Postorder: ";

for (int i=0; i<postOrd.size(); i++)

std::cout << postOrd[i]->getIndex() << " ";

std::cout << std::endl;

// print the nodes in preorder

std::cout << "Preorder: ";

for (int i=postOrd.size()-1; i>=0; i--)

std::cout << postOrd[i]->getIndex() << " ";

std::cout << std::endl;

171

172 APPENDIX C. A SIMPLE TREE

return 0;

}

Node.hpp file from Chapter 8.4

#ifndef Node_hpp

#define Node_hpp

#include <string>

class Node {

public:

Node(void);

Node* getLft(void) { return left; }

Node* getRht(void) { return right; }

Node* getAnc(void) { return ancestor; }

int getIndex(void) { return index; }

std::string getName(void) { return name; }

double getBranchLength(void) { return branchLength; }

void setLft(Node* p) { left = p; }

void setRht(Node* p) { right = p; }

void setAnc(Node* p) { ancestor = p; }

void setIndex(int x) { index = x; }

void setName(std::string s) { name = s; }

void setBranchLength(double x) { branchLength = x; }

void print(void);

protected:

Node* left;

Node* right;

Node* ancestor;

int index;

std::string name;

double branchLength;

};

#endif

173

Node.cpp file from Chapter 8.4

#include <iostream>

#include "Node.hpp"

Node::Node(void) {

left = NULL;

right = NULL;

ancestor = NULL;

index = 0;

name = "";

branchLength = 0.0;

}

void Node::print(void) {

std::cout << "Node " << index << " (" << this << ")" << std::endl;

std::cout << " Lft: " << left << std::endl;

std::cout << " Rht: " << right << std::endl;

std::cout << " Anc: " << ancestor << std::endl;

std::cout << " Name: \"" << name << "\"" << std::endl;

std::cout << " Brlen: " << branchLength << std::endl;

}

Tree.hpp file from Chapter 8.4

#ifndef Tree_hpp

#define Tree_hpp

#include <vector>

class Node;

class Tree {

public:

Tree(void);

174 APPENDIX C. A SIMPLE TREE

~Tree(void);

std::vector<Node*>& getTraversalOrder(void) { return postOrderSequence; }

void listNodes(void);

protected:

void initializeTraversalOrder(void);

void passDown(Node* p);

Node* root;

std::vector<Node*> nodes;

std::vector<Node*> postOrderSequence;

};

#endif

Tree.cpp file from Chapter 8.4

#include <iostream>

#include "Node.hpp"

#include "Tree.hpp"

Tree::Tree(void) {

// make the three-species tree of Figure 8.1

// allocate the five nodes for the three-species tree

for (int i=0; i<5; i++)

{

Node* newNode = new Node;

nodes.push_back(newNode);

}

// set the member pointers

Node* p = nodes[0];

p->setAnc(nodes[3]);

p->setLft(NULL);

p->setRht(NULL);

p->setIndex(0);

p->setBranchLength(0.10);

p->setName("Sp1");

175

p = nodes[1];

p->setAnc(nodes[3]);

p->setLft(NULL);

p->setRht(NULL);

p->setIndex(1);

p->setBranchLength(0.10);

p->setName("Sp2");

p = nodes[2];

p->setAnc(nodes[4]);

p->setLft(NULL);

p->setRht(NULL);

p->setIndex(2);

p->setBranchLength(0.30);

p->setName("Sp3");

p = nodes[3];

p->setAnc(nodes[4]);

p->setLft(nodes[0]);

p->setRht(nodes[1]);

p->setIndex(3);

p->setBranchLength(0.20);

p->setName("");

p = nodes[4];

p->setAnc(NULL);

p->setLft(nodes[3]);

p->setRht(nodes[2]);

p->setIndex(4);

p->setBranchLength(0.0);

p->setName("");

root = nodes[4];

initializeTraversalOrder();

}

Tree::~Tree(void) {

for (int i=0; i<nodes.size(); i++)

delete nodes[i];

}

void Tree::initializeTraversalOrder(void) {

postOrderSequence.clear();

176 APPENDIX C. A SIMPLE TREE

passDown(root);

}

void Tree::listNodes(void) {

for (int i=0; i<nodes.size(); i++)

{

nodes[i]->print();

}

}

void Tree::passDown(Node* p) {

if (p != NULL)

{

passDown(p->getLft());

passDown(p->getRht());

postOrderSequence.push_back(p);

}

}

Appendix D

Birth-Death Process of Cladogenesis
Code

main.cpp file from Chapter 9.3

#include <iostream>

#include "RandomVariable.hpp"

#include "Tree.hpp"

int main(int argc, char* argv[]) {

RandomVariable rv;

Tree t(3.0, 1.0, 1.0, &rv);

std::cout << t.getNewickRepresentation() << std::endl;

return 0;

}

Node.hpp file from Chapter 9.3

#ifndef Node_hpp

#define Node_hpp

#include <string>

177

178 APPENDIX D. BIRTH-DEATH PROCESS OF CLADOGENESIS CODE

class Node {

public:

Node(void);

Node* getLft(void) { return left; }

Node* getRht(void) { return right; }

Node* getAnc(void) { return ancestor; }

int getIndex(void) { return index; }

std::string getName(void) { return name; }

double getBranchLength(void) { return branchLength; }

double getTime(void) { return time; }

void setLft(Node* p) { left = p; }

void setRht(Node* p) { right = p; }

void setAnc(Node* p) { ancestor = p; }

void setIndex(int x) { index = x; }

void setName(std::string s) { name = s; }

void setBranchLength(double x) { branchLength = x; }

void setTime(double x) { time = x; }

void print(void);

protected:

Node* left;

Node* right;

Node* ancestor;

int index;

std::string name;

double branchLength;

double time;

};

#endif

Node.cpp file from Chapter 9.3

#include <iostream>

#include "Node.hpp"

Node::Node(void) {

179

left = NULL;

right = NULL;

ancestor = NULL;

index = 0;

name = "";

branchLength = 0.0;

time = 0.0;

}

void Node::print(void) {

std::cout << "Node " << index << " (" << this << ")" << std::endl;

std::cout << " Lft: " << left << std::endl;

std::cout << " Rht: " << right << std::endl;

std::cout << " Anc: " << ancestor << std::endl;

std::cout << " Name: \"" << name << "\"" << std::endl;

std::cout << " Brlen: " << branchLength << std::endl;

std::cout << " Time: " << time << std::endl;

}

Tree.hpp file from Chapter 9.3

#ifndef Tree_hpp

#define Tree_hpp

#include <set>

#include <sstream>

#include <string>

#include <vector>

class Node;

class RandomVariable;

class Tree {

public:

Tree(double lambda, double mu, double duration,

RandomVariable* rv);

~Tree(void);

std::vector<Node*>& getTraversalOrder(void) { return postOrderSequence; }

void listNodes(void);

180 APPENDIX D. BIRTH-DEATH PROCESS OF CLADOGENESIS CODE

std::string getNewickRepresentation(void);

int getNumExtant(void) { return numExtant; }

void setNumExtant(int x) { numExtant = x; }

protected:

Tree(void) { }

Node* chooseNodeFromSet(std::set<Node*>& s, RandomVariable* rv);

void initializeTraversalOrder(void);

void passDown(Node* p);

void writeTree(Node* p, std::stringstream& ss);

Node* root;

std::vector<Node*> nodes;

std::vector<Node*> postOrderSequence;

int numExtant;

};

#endif

Tree.cpp file from Chapter 9.3

#include <iomanip>

#include <iostream>

#include <set>

#include "Node.hpp"

#include "RandomVariable.hpp"

#include "Tree.hpp"

Tree::Tree(double lambda, double mu, double duration, RandomVariable* rv) {

// generate a birth-death with parameter lambda, mu, and duration

// initialize the single lineage, adding

// the descendant to a list of active nodes

nodes.push_back(new Node);

nodes.push_back(new Node);

nodes[0]->setLft(nodes[1]);

nodes[1]->setAnc(nodes[0]);

std::set<Node*> activeNodes;

activeNodes.insert(nodes[1]);

root = nodes[0];

181

// generate the full tree

double t = 0.0;

while (t < duration)

{

// increment t using the exponential distribution

double rate = activeNodes.size() * (lambda + mu);

t += rv->exponentialRv(rate);

// if t is still less than duration, go ahead do the speciation

// or extinction thing on a randomly selected active lineage

if (t < duration)

{

// choose a node

Node* p = chooseNodeFromSet(activeNodes, rv);

p->setTime(t);

// choose a type of event

double u = rv->uniformRv();

if (u < lambda / (lambda+mu))

{

// speciation event

Node* newLft = new Node; // 1. allocate new left and

Node* newRht = new Node; // right nodes

nodes.push_back(newLft); // 2. add the new nodes to the tree

nodes.push_back(newRht);

newLft->setAnc(p); // 3. set the ancestor of both new

newRht->setAnc(p); // nodes to be p

p->setLft(newLft); // 4. set the left and right values of

p->setRht(newRht); // p to be the new nodes

activeNodes.erase(p); // 5. modify the list of active nodes

activeNodes.insert(newLft);

activeNodes.insert(newRht);

}

else

{

// extinction event

activeNodes.erase(p); // poor p ... he's dead

}

}

}

// clean up

numExtant = (int)activeNodes.size();

for (Node* nde : activeNodes)

182 APPENDIX D. BIRTH-DEATH PROCESS OF CLADOGENESIS CODE

{

nde->setTime(duration);

}

initializeTraversalOrder();

// set the index variable and assign branch lengths from the node times

int nodeIdx = 0;

for (int i=0; i<postOrderSequence.size(); i++)

{

Node* p = postOrderSequence[i];

if (p->getLft() == NULL && p->getRht() == NULL)

{

p->setIndex(nodeIdx++);

p->setName(std::to_string(nodeIdx));

}

if (p->getAnc() != NULL)

p->setBranchLength(p->getTime() - p->getAnc()->getTime());

}

for (int i=0; i<postOrderSequence.size(); i++)

{

Node* p = postOrderSequence[i];

if (!(p->getLft() == NULL && p->getRht() == NULL))

p->setIndex(nodeIdx++);

}

}

Tree::~Tree(void) {

for (int i=0; i<nodes.size(); i++)

delete nodes[i];

}

Node* Tree::chooseNodeFromSet(std::set<Node*>& s, RandomVariable* rv) {

int whichNode = (int)(s.size() * rv->uniformRv());

int i = 0;

for (Node* nde : s)

{

if (whichNode == i)

return nde;

i++;

}

return NULL;

}

183

std::string Tree::getNewickRepresentation(void) {

std::stringstream ss;

if (root->getLft() != NULL && root->getRht() != NULL)

writeTree(root, ss);

else

writeTree(root->getLft(), ss);

std::string newick = ss.str();

return newick;

}

void Tree::initializeTraversalOrder(void) {

postOrderSequence.clear();

passDown(root);

}

void Tree::listNodes(void) {

for (int i=0; i<nodes.size(); i++)

{

nodes[i]->print();

}

}

void Tree::passDown(Node* p) {

if (p != NULL)

{

passDown(p->getLft());

passDown(p->getRht());

postOrderSequence.push_back(p);

}

}

void Tree::writeTree(Node* p, std::stringstream& ss) {

if (p != NULL)

{

if (p->getLft() == NULL)

{

ss << p->getName() << ":" << std::fixed << std::setprecision(5) << p->getBranchLength();

}

else

{

184 APPENDIX D. BIRTH-DEATH PROCESS OF CLADOGENESIS CODE

ss << "(";

writeTree (p->getLft(), ss);

ss << ",";

writeTree (p->getRht(), ss);

if (p->getAnc() == NULL)

ss << ")";

else

ss << "):" << std::fixed << std::setprecision(5) << p->getBranchLength();

}

}

}

Appendix E

Site Probabilities

The probabilities of all 256 site patterns when simulated on the tree of Figure 10.4 under the
HKY85 model of nucleotide substitution. The nucleotides for the site patterns are ordered from
left to right (on the tree from Figure 10.4). These probabilities were calculated on the tree of Figure
10.4 under the HKY85 model of substitution with κ = 5, πA = 0.4, , πC = 0.3, , πG = 0.2, and
πT = 0.1.

Patterns starting with A:

Pattern Prob. Pattern Prob. Pattern Prob. Pattern Prob.

AAAA 0.199465 AGAA 0.014711 ACAA 0.004185 ATAA 0.001395

AAAC 0.004185 AGAC 0.000725 ACAC 0.005482 ATAC 0.000350

AAAG 0.014711 AGAG 0.019868 ACAG 0.000725 ATAG 0.000242

AAAT 0.001395 AGAT 0.000242 ACAT 0.000350 ATAT 0.001594

AACA 0.009075 AGCA 0.000843 ACCA 0.000703 ATCA 0.000121

AACC 0.000703 AGCC 0.000315 ACCC 0.019527 ATCC 0.000752

AACG 0.000843 AGCG 0.002202 ACCG 0.000315 ATCG 0.000048

AACT 0.000121 AGCT 0.000048 ACCT 0.000752 ATCT 0.001546

AAGA 0.028625 AGGA 0.005985 ACGA 0.000702 ATGA 0.000234

AAGC 0.000702 AGGC 0.000755 ACGC 0.001837 ATGC 0.000116

AAGG 0.005985 AGGG 0.032738 ACGG 0.000755 ATGG 0.000252

AAGT 0.000234 AGGT 0.000252 ACGT 0.000116 ATGT 0.000535

AATA 0.003025 AGTA 0.000281 ACTA 0.000121 ATTA 0.000154

AATC 0.000121 AGTC 0.000048 ACTC 0.001781 ATTC 0.000517

AATG 0.000281 AGTG 0.000734 ACTG 0.000048 ATTG 0.000073

AATT 0.000154 AGTT 0.000073 ACTT 0.000517 ATTT 0.004711

185

186 APPENDIX E. SITE PROBABILITIES

Patterns starting with C:

Pattern Prob. Pattern Prob. Pattern Prob. Pattern Prob.

CAAA 0.018317 CGAA 0.001490 CCAA 0.000628 CTAA 0.000166

CAAC 0.000628 CGAC 0.000210 CCAC 0.009592 CTAC 0.000415

CAAG 0.001490 CGAG 0.002878 CCAG 0.000210 CTAG 0.000048

CAAT 0.000166 CGAT 0.000048 CCAT 0.000415 CTAT 0.001214

CACA 0.005277 CGCA 0.000669 CCCA 0.004524 CTCA 0.000375

CACC 0.004524 CGCC 0.002262 CCCC 0.167489 CTCC 0.005866

CACG 0.000669 CGCG 0.002304 CCCG 0.002262 CTCG 0.000188

CACT 0.000375 CGCT 0.000188 CCCT 0.005866 CTCT 0.007452

CAGA 0.003304 CGGA 0.001065 CCGA 0.000210 CTGA 0.000048

CAGC 0.000210 CGGC 0.000209 CCGC 0.004796 CTGC 0.000208

CAGG 0.001065 CGGG 0.006655 CCGG 0.000209 CTGG 0.000059

CAGT 0.000048 CGGT 0.000059 CCGT 0.000208 CTGT 0.000607

CATA 0.000959 CGTA 0.000120 CCTA 0.000360 CTTA 0.000404

CATC 0.000360 CGTC 0.000180 CCTC 0.011625 CTTC 0.001716

CATG 0.000120 CGTG 0.000420 CCTG 0.000180 CTTG 0.000202

CATT 0.000404 CGTT 0.000202 CCTT 0.001716 CTTT 0.013873

Patterns starting with G:

Pattern Prob. Pattern Prob. Pattern Prob. Pattern Prob.

GAAA 0.045565 GGAA 0.005060 GCAA 0.001004 GTAA 0.000335

GAAC 0.001004 GGAC 0.000453 GCAC 0.001837 GTAC 0.000116

GAAG 0.005060 GGAG 0.017648 GCAG 0.000453 GTAG 0.000151

GAAT 0.000335 GGAT 0.000151 GCAT 0.000116 GTAT 0.000535

GACA 0.002514 GGCA 0.000532 GCCA 0.000315 GTCA 0.000048

GACC 0.000315 GGCC 0.000194 GCCC 0.009764 GTCC 0.000376

GACG 0.000532 GGCG 0.002904 GCCG 0.000194 GTCG 0.000036

GACT 0.000048 GGCT 0.000036 GCCT 0.000376 GTCT 0.000773

GAGA 0.014437 GGGA 0.008240 GCGA 0.000476 GTGA 0.000159

GAGC 0.000476 GGGC 0.001251 GCGC 0.001823 GTGC 0.000117

GAGG 0.008240 GGGG 0.056794 GCGG 0.001251 GTGG 0.000417

GAGT 0.000159 GGGT 0.000417 GCGT 0.000117 GTGT 0.000530

GATA 0.000838 GGTA 0.000177 GCTA 0.000048 GTTA 0.000073

GATC 0.000048 GGTC 0.000036 GCTC 0.000891 GTTC 0.000258

GATG 0.000177 GGTG 0.000968 GCTG 0.000036 GTTG 0.000040

GATT 0.000073 GGTT 0.000040 GCTT 0.000258 GTTT 0.002355

187

Patterns starting with T:

Pattern Prob. Pattern Prob. Pattern Prob. Pattern Prob.

TAAA 0.006106 TGAA 0.000497 TCAA 0.000166 TTAA 0.000099

TAAC 0.000166 TGAC 0.000048 TCAC 0.001389 TTAC 0.000240

TAAG 0.000497 TGAG 0.000959 TCAG 0.000048 TTAG 0.000038

TAAT 0.000099 TGAT 0.000038 TCAT 0.000240 TTAT 0.002009

TACA 0.000959 TGCA 0.000120 TCCA 0.000548 TTCA 0.000215

TACC 0.000548 TGCC 0.000274 TCCC 0.019456 TTCC 0.001275

TACG 0.000120 TGCG 0.000420 TCCG 0.000274 TTCG 0.000108

TACT 0.000215 TGCT 0.000108 TCCT 0.001275 TTCT 0.006924

TAGA 0.001101 TGGA 0.000355 TCGA 0.000048 TTGA 0.000038

TAGC 0.000048 TGGC 0.000059 TCGC 0.000694 TTGC 0.000120

TAGG 0.000355 TGGG 0.002218 TCGG 0.000059 TTGG 0.000030

TAGT 0.000038 TGGT 0.000030 TCGT 0.000120 TTGT 0.001005

TATA 0.001119 TGTA 0.000143 TCTA 0.000231 TTTA 0.000893

TATC 0.000231 TGTC 0.000116 TCTC 0.004935 TTTC 0.003240

TATG 0.000143 TGTG 0.000488 TCTG 0.000116 TTTG 0.000447

TATT 0.000893 TGTT 0.000447 TCTT 0.003240 TTTT 0.031522

188 APPENDIX E. SITE PROBABILITIES

Bibliography

Cummings, M. P., S. P. Otto, and J. Wakeley. 1995. Sampling properties of dna sequence data in
phylogenetic analysis. Molecular Biology and Evolution 12:814–822.

Edwards, A. W. F. 2009. Statistical methods for evolutionary trees. Genetics 183:5–12.

Felsenstein, J. 1981. Evolutionary trees from DNA sequences: A maximum likelihood approach.
Journal of Molecular Evolution 17:368–376.

Fisher, R. A. 1950. Gene frequencies in a cline determined by selection and diffusion. Biometrics
6:353–361.

Gallager, R. G. 1962. Low-density parity-check codes. IRE Trans. Inform. Theory 8:21–28.

Gallager, R. G. 1963. Low-density parity check codes. MIT Press, Cambridge, MA.

Gelfand, A. E. and A. F. M. Smith. 1990. Sampling-based approaches to calculating marginal
densities. J. Amer. Statist. Assoc. 85:398–409.

Geman, S. and D. Geman. 1984. Stochastic relaxation, Gibbs distributions, and the Bayesian
restoration of images. IEEE Transactions on Patrtern Analysis and Machine Intelligence 6:721–
741.

Hasegawa, M., H. Kishino, and T. Yano. 1985. Dating the human-ape splitting by a molecular clock
of mitochondrial DNA. Journal of Molecular Evolution 22:160–174.

Hasegawa, M., T. Yano, and H. Kishino. 1984. A new molecular clock of mitochondrial DNA and
the evolution of Hominoids. Proc. Japan Acad. Ser. B 60:95–98.

Hastings, W. K. 1970. Monte Carlo sampling methods using Markov chains and their applications.
Biometrika 57:97–109.

Höhna, S., M. J. Landis, T. A. Heath, B. Boussau, N. Lartillot, B. R. Moore, J. P. Huelsenbeck,
and F. Ronquist. 2016. Revbayes: Bayesian phylogenetic inference using graphical models and
an interactive model-specification language. Systematic Biology 65:726–736.

Huelsenbeck, J. P., C. Ané, B. Larget, and F. Ronquist. 2008. A Bayesian perspective on a non-
parsimonious parsimony model. Systematic Biology 57:406–419.

Jukes, T. H. and C. R. Cantor. 1969. Evolution of protein molecules. Pages 21–123 in Mammalian
Protein Metabolism (H. N. Munro, ed.) Academic Press.

189

190 BIBLIOGRAPHY

Kendall, D. G. 1948. On the generalized “birth-death” process. Annual Review of Mathematical
Statistics 19:1–15.

Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through
comparative studies of nucleotide sequences. Journal of Molecular Evolution 16:111–120.

Lewis, P. O. 2003. Ncl: a C++ class library for interpreting data files in nexus format 19:2330–2331.

Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. 1953. Equation
of state calculations by fast computing machines. Journal of Chemical Physics 21:1087–1092.

Nee, S., R. M. May, and P. H. Harvey. 1994. The reconstructed evolutionary process. Philosophical
Transactions of the Royal Society of London B 344:305–311.

Nielsen, R. 2002. Mapping mutations on phylogenies. Systematic Biology 51:729–739.

Park, S. K. and K. W. Miller. 1988. Random number generators: good ones are hard to find.
Communications of the ACM 31:1192–1201.

Schröder, E. 1870. Vier combinatorische probleme. Zeitschrift für Mathematik und Physik 15:361–
376.

Swofford, D. L. 1998. PAUP*: Phylogenetic Analysis Using Parsimony and Other Methods. Sinauer
Associates, Inc., Sunderland, Massachusetts.

Tamura, K. and M. Nei. 1993. Estimation of the number of nucleotide substitutions in the con-
trol region of mitochondrial dna in humans and chimpanzees. Molecular Biology and Evolution
10:512–526.

Tavaré, S. 1986. Some probabilistic and statistical problems on the analysis of DNA sequences.
Lectures in Mathematics in the Life Sciences 17:57–86.

Thompson, E. A. 1975. Human Evolutionary Trees. Cambridge University Press, Cambridge, Eng-
land.

Tuffley, C. and M. Steel. 1997. Links between maximum likelihood and maximum parsimony under
a simple model of site substitution. Bulletin of Mathematical Biology 59:581–607.

