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co•a•lesce |ˌkōəˈles|
verb [ intrans. ]
come together and form one mass or whole : the puddles had

coalesced into shallow streams | the separate details coalesce to
form a single body of scientific thought.
• [ trans. ] combine (elements) in a mass or whole : to help
coalesce the community, they established an office.



Coalescence theory as a tool for population genetics
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¡ We have data: for example, microsatellite data, single
locus DNA sequences, or genomes

we need to decide on a model to connect
the data with parameters of interest.

The coalescent represent the relationship among
individuals and can be expressed as a genealogy of
individuals genes (not individuals)
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Adult TadpoleTadpoleAdultWright-Fisher population model

All individuals live one generation
and get replaced by their offspring

All have same chance to reproduce, all are equally fit

The number of individuals in the population is constant

As a result the individuals in generation n are a random draw from the previous
generation n− 1.
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Sewall Wright evaluated the probability that two randomly chosen
individuals in generation t have a common ancestor in
generation t− 1. If we assume that there are 2N chromosomes
then the probability of sharing a common ancestor in the last generation is

t− 1

t
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Sewall Wright evaluated the probability that two randomly chosen
individuals in generation t have a common ancestor in
generation t− 1. If we assume that there are 2N chromosomes
then the probability of sharing a common ancestor in the last generation is

1.0
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Sewall Wright evaluated the probability that two randomly chosen
individuals in generation t have a common ancestor in
generation t− 1. If we assume that there are 2N chromosomes
then the probability of sharing a common ancestor in the last generation is

1.0× 1

2N
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t



Population model

Sewall Wright evaluated the probability that two randomly chosen
individuals in generation t have a common ancestor in generation
t−1. If we assume that there are 2N chromosomes then the
probability of sharing a common ancestor in the last generation is

1

2N

t− 1

t

t− 1

t

The probability that two randomly picked chromosome do not have a common
ancestor is

1− 1

2N
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The probability that two individuals share a common parent
after t generations is

P(t|N) =

(
1− 1

2N

)
×
(
1− 1

2N

)
...×

(
1− 1

2N

)
︸ ︷︷ ︸

t times

(
1

2N

)

=

(
1− 1

2N

)t(
1

2N

)
where t is the number of generations with no coalescence. This formula is
known as the Geometric Distribution and we can calculate the expectation of
the waiting time until two random individuals coalesce as

E(t) = 2N
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Probability Distribution
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P

10000 random draw from a population with size 2N=20
leads to this distribution of times until two randomly chosen
individuals have a common ancestor. The observed mean
waiting time of 2N=20.34



Observations: Coalescence of two lineages
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For the time of coalescence in a sample of TWO , we will wait on average

2N generations assuming it is a Wright-Fisher population

The model assumes that the generations are discrete and non-overlapping

Real populations do not necessarily behave like a Wright-Fisher (the ‘ideal’
population)

We assume that calculation using Wright-Fisher populations can be
extrapolated to real populations.



Other population models
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Wright-Fisher Canning Moran

σ2
offspring ≃ 1 σ2

offspring = x σ2
offspring = 2

2N

E(t) = 2N E(t) = 2N/x E(t) = 1
2(2N)2

generation time g = 1 g = 1 g = 2N

You can generate graphs like this using the python program popsim (check out my faculty page for the link)
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Wright-Fisher Canning Moran

σ2
offspring ≃ 1 σ2

offspring = x σ2
offspring = 2

2N

E(t) = 2N E(t) = 2N/x E(t) = 1
2(2N)2

generation time g = 1 g = 1 g = 2N

You can generate graphs like this using the python program popvizard (check out my faculty page for the link)
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Wright-Fisher Canning Moran

σ2
offspring ≃ 1 σ2

offspring = x σ2
offspring = 2

2N

E(t) = 2N E(t) = 2N/x E(t) = 1
2(2N)2

generation time g = 1 g = 1 g = 2N

You can generate graphs like this using the python program popsim (check out my faculty page for the link)
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Samples larger than two

39 /100 ©2024 Peter Beerli

Sir J. F. C. Kingman described in 1982 the n-coalecent. He
showed the behavior of a sample of size n (instead of n I
will use k in the following slides), and its probability structure
looking backwards in time.

General findings:

coalescence rate =

(
k

2

)
=

k(k − 1)

2

Once a coalescence happened k is reduced to k − 1 because
two lineages merged into one. He then imposed a continuous
approximation of the Canning’s exchangeable model to get
results.



Sewall Wrights result on two lineages can be approximated:

In the discrete Wright-Fisher model we calculate the probability of non-
coalescent during t generation; By using a suitable timescale τ such that
one unit of scaled time corresponds to 2N generations, we can simplify to
an continuous process

(1− 1

2N
)t = (1− 1

2N
)(2N)τ → e−τ ,

as N goes to infinity. For more than two lineages we use Kingman’s result
and use

e−τ(k2)

for the probability of non-coalescence of k lineages during the time interval
τ ; we will elaborate on τ soon.

Timescale
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Sewall Wrights result on two lineages can be approximated:

In the discrete Wright-Fisher model we calculate the probability of non-
coalescent during t generation; By using a suitable timescale τ such that
one unit of scaled time corresponds to 2N generations, we can simplify to
an continuous process

(1− 1

2N
)t = (1− 1

2N
)(2N)τ → e−τ ,

as N goes to infinity. For more than two lineages we use Kingman’s result
and use

e−τ(k2)

for the probability of non-coalescence of k lineages during the time interval
τ ; we will elaborate on τ soon.

For there curious: this
is Poisson τk

k! e
−τ with

k events, here with
k=0 → e−τ

Timescale
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Time

The time scale here is arbitrary, for example if
the rate is 2 calls per 10 minutes; we then have
a probability of getting no call for 10 minutes as

e−10×2/10 = 0.135



Time

If another type of call has a rate of 4 calls per 10
minutes; we then have a probability of getting
no call for 10 minutes as I

e−10×4/10 = 0.018

First analogy



First analogy
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Time

Having two type of calls with different rates
2/10 and 4/10; we then have a probability of
getting no call for 10 minutes as

e−10×(2/10)×e−10×(4/10) = e−10×(2/10+4/10) = 0.0024



Second analogy
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Samples larger than two
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Samples larger than two
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u0

u1

u3

u4

Looking backward in time, the first coalescence
between two random individuals is the result of
a waiting process that depends on the sample
of size k and the total population size N .
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Looking backward in time, the first coalescence
between two random individuals is the result of
a waiting process that depends on the sample
of size k and the total population size N .

Using Kingman’s coalescence rate and
imposing a time scale we can approximate the
process with a exponential distribution:
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u0

u1

u3

u4

Looking backward in time, the first coalescence
between two random individuals is the result of
a waiting process that depends on the sample
of size k and the total population size N .

Using Kingman’s coalescence rate and
imposing a time scale we can approximate the
process with an exponential distribution:

P(uj|N) = e−ujλλ
with the scaled coalescence rate

λ =

(
k

2

)
1

2N
× Prob(others do not coalesce)
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u0

u1

u3

u4

Looking backward in time, the first coalescence
between two random individuals is the result of
a waiting process that depends on the sample
of size k and the total population size N .

Using Kingman’s coalescence rate and
imposing a time scale we can approximate the
process with a exponential distribution:

P(uj|N) = e−ujλλ
with the scaled coalescence rate

λ =

(
k

2

)
1

2N
=

k(k − 1)

2(2N)
=

k(k − 1)

4N



Samples larger than two
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u0

u1

u3

u4

We are now able to calculate the probability
of a whole relationship tree (Genealogy
G). We assume that each coalescence is
independent from any other:

P(G|N)
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u0

u1

u3

u4

We are now able to calculate the probability
of a whole relationship tree (Genealogy
G). We assume that each coalescence is
independent from any other:

P(G|N) = P(u0|N, i1, i2)

×
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We are now able to calculate the probability
of a whole relationship tree (Genealogy
G). We assume that each coalescence is
independent from any other:

P(G|N) = P(u0|N, i1, i2)

× P(u1|N, i3, i4)
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u0
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We are now able to calculate the probability
of a whole relationship tree (Genealogy
G). We assume that each coalescence is
independent from any other:

P(G|N) = P(u0|N, i1, i2)

× P(u1|N, i3, i4)

× P(u3|N, i3,4, i5)
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u0

u1

u3

u4

We are now able to calculate the probability
of a whole relationship tree (Genealogy
G). We assume that each coalescence is
independent from any other:

P(G|N) = P(u0|N, i1, i2)

× P(u1|N, i3, i4)

× P(u3|N, i3,4, i5)

× P(u4|N, i1,2, i3,4,5)
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u0

u1

u3

u4

We are now able to calculate the probability
of a whole relationship tree (Genealogy
G). We assume that each coalescence is
independent from any other:

P(G|N) = P(u0|N, i1, i2)

× P(u1|N, i3, i4)

× P(u3|N, i3,4, i5)

× P(u4|N, i1,2, i3,4,5)

P(G|N) =
T∏

j=0

e−uj
kj(kj−1)

4N
k(k − 1)

4N

2

k(k − 1)
=

T∏
j=0

e−uj
kj(kj−1)

4N
2

4N
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u0

u1

u3

u4

P(G|N) =
T∏

j=0

e−uj
kj(kj−1)

4N
2

4N

The expectations of the total time to
coalescence is the sum of the expectations
for each interval. Each interval has
expectation

E(u) =
4N

k(k − 1)

this leads to the expectation for the time of
the most recent common ancestor

E(τMRCA) = Sum of the expectation of each time interval =
J∑

j=0

4N

kj(kj − 1)

lim
k→∞

E(τMRCA) = 2N +
2

3
N +

1

3
N +

1

5
N +

2

15
N + ... = 4N lim

k→∞
σ(τMRCA) = 4N



If we know the genealogy G with certainty
then we can calculate the population size N .
Finding the maximum probability P(G|N, k) is
simple, we evaluate all possible values for N
and pick the value with the highest probability.

What is it good for?
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If we know the genealogy G with certainty then we can calculate the population
size N . Finding the maximum probability P(G|N, k) is simple, we evaluate all
possible values for N and pick the value with the highest probability.



Population size estimation
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If an oracle gives us the true relationship tree G then we can calculate the
population size N .

p(G|N,n) =
n∏

k=2

exp

(
−uk

k(k− 1)

4N

)
2

4N
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If an oracle gives us the true relationship tree G then we can calculate the
population size N .

p(G|N,n) =
n∏

k=2

exp

(
−uk

k(k− 1)

4N

)
2

4N
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If an oracle gives us the true relationship tree G then we can calculate the
population size N .

p(G|N,n) =
n∏

k=2

exp

(
−uk

k(k− 1)

4N

)
2

4N
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If an oracle gives us the true relationship tree G then we can calculate the
population size N .

p(G|N,n) =
n∏

k=2

exp

(
−uk

k(k− 1)

4N

)
2

4N
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If an oracle gives us the true relationship tree G then we can calculate the
population size N .

p(G|N,n) =
n∏

k=2

exp

(
−uk

k(k− 1)

4N

)
2

4N



Population size estimation

67 /100 ©2024 Peter Beerli

If an oracle gives us the true relationship tree G then we can calculate the
population size N .

p(G|N,n) =
n∏

k=2

exp

(
−uk

k(k− 1)

4N

)
2

4N
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If an oracle gives us the true relationship tree G then we can calculate the
population size N .

p(G|N,n) =
n∏

k=2

exp

(
−uk

k(k− 1)

4N

)
2

4N
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If an oracle gives us the true relationship tree G then we can calculate the
population size N .

p(G|N,n) =
n∏

k=2

exp

(
−uk

k(k− 1)

4N

)
2

4N
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If an oracle gives us the true relationship tree G then we can calculate the
population size N .

p(G|N,n) =
n∏

k=2

exp

(
−uk

k(k− 1)

4N

)
2

4N
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If an oracle gives us the true relationship tree G then we can calculate the
population size N .

p(G|N,n) =
n∏

k=2

exp

(
−uk

k(k− 1)

4N

)
2

4N



Population size estimation
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There are at least two problems with the oracle-approach:

There is no oracle to gives us clear information!

We do not record genealogies, our data are sequences, microsatellite loci!

What about the variability of the coalescent?



Variability of the coalescent process
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All genealogies were simulated with the same population size Ne = 10, 000



Variability of the coalescent process
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20 40 60 80 100

5.

10.

15.

20.

25.
[10-6]

[103 generations]
Time to MRCA 

freq.

MRCA = most recent common ancestor (last node in the genealogy)



Kingman’s n-coalescent is an approximation
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All individuals have the same fitness (no selection).

All individuals have the same chance to be in the sample (random
sampling).

The coalescent allows only merging two lineages per generation. This
restricts us to to have a much smaller sample size than the population size.

n << N

Yun-Xin Fu (2005) described the exact coalescent for the Wright-Fisher
model and derived a maximal sample size n<

√
4N for a diploid population.

Although this may look like a severe restriction for the use of the
coalescence in small populations, it turned out that the coalescence is rather
robust and that even sample sizes close to the effective population size are
not biasing immensely.



Ignoring multimerger coalescences
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Here are the exact probabilities of 0, 1, or more coalescences with 10 lineages
in populations of different sizes:

Population size Coalescences within a single generation
0 1 >1

100 0.79560747 0.18744678 0.01694575
1000 0.97771632 0.02209806 0.00018562

10000 0.99775217 0.00224595 0.00000187

Note that increasing the population size by a factor of 10 reduces the
coalescent rate for pairs by about 10-fold, but reduces the rate for triples (or
more) by about 100-fold.



Observations

77 /100 ©2024 Peter Beerli

Large samples coalesce on average in 4N generations.

The time to the most recent common ancestor (TMRCA) has a large variance

Even a sample with few individuals can most often recover the same TMRCA
as a large sample.

The sample size should be much smaller than the population size, although
severe problems appear only with sample sizes of the same magnitude
as the population size, or with non-random samples because Kingman’s
coalescence process assumes that maximally two sample lineages coalesce
in any generation.

With a known genealogy we can estimate the population size. Unfortunately,
the true genealogy of a sample is rarely known.



Genealogy and data
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Finding the best genealogy from such data is difficult

Genealogy and data
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Genetic data and the coalescent
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Finite populations loose alleles due to genetic drift

Mutation introduces new alleles into a population at rate µ

With 2N chromosomes we can expect to see every generation 2Nµ new
mutations. The population size N is positively correlated with the mutation
rate µ.

With genetic data sampled from several individuals we can use the mutational
variability to estimate the population size.



Population size
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The observed genetic variability
S = f(N,µ, n).

Different N and appropriate µ can give the same number of mutations. For
example, for 100 loci sampled from 20 individuals with 1000bp each, we get :

N µ 4Nµ Ŝ σ2
S

1250 10−5 0.05 153.95 16.25

12500 10−6 0.05 152.89 16.05

Using genetic variability alone therefore does not allow to disentangle N and µ.
With multiple dated samples and known generation time we can estimate N and
µ independently.



Mutation-scaled population size
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By convention we express most results as the compound Nµ and an inheritance
scalar x, for simplicity we call this the mutation-scaled population size

Θ = xNµ,

where µ is the mutation rate per generation and per site. With a mutation rate
per locus we use θ.

for diploids: Θ = 4Nµ.

for haploids: Θ = 2Nµ.



Time scale (second)
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P (no coalescence with n lineages) = exp

(
−τ

(
k

2

))
scaling time τ by the population size 2N and using t in generations we get
τ = t 1

2N , this then leads to

P (coalescence at t0 + t) = exp(−tλ)λ with λ =
1

2N

k(k − 1)

2

When we use DNA data, we assume there is a mutation model with a mutation
rate µ; we include that in our scaling and use time t as scaled by expected
mutation rate per generation and Θ = 4Nµ:

P (a coalescent at time t0 + t|t0) =
2

Θ
exp(−t

k(k − 1)

Θ
)



Each site has a single coalescent tree

Loci in close proximity share most likely the same coalescent tree, but
dependent on the magnitude of the recombination rate, loci may be linked
or unlinked.

We assume that loci on different chromosomes are independent.

Usually, we treat each locus as independent and combine the single locus
estimates.

What is an individual for the coalescent
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Each site can have different coalescents: Recombination
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How to make inference using genetic data
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Sequence data has some sites in
some individuals that are different
than others

=⇒ Mutation model (finite vs infinite)

Population model =⇒ the Coalescent

Analysis method =⇒ Summary statistics
Maximum likelihood
Bayesian Inference
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Sequence data has some sites in
some individuals that are different
than others

=⇒ Mutation model (finite vs infinite)

Population model =⇒ the Coalescent

Analysis method =⇒ Summary statistics
Maximum likelihood
Bayesian Inference

I



Genetic data and the coalescent
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Using the infinite sites model we use the number of variable sites S per locus to
calculate the mutation-scaled population size:

θW =
S

n−1∑
k=1

1
k

from a sample of n individuals. For a single population the Watterson’s estimator
works marvelously well, but it is vulnerable to population structure.

Watterson’s θW uses a mutation rate per locus! To compare with other work use
mutation rate per site.



Construction of a versatile estimator
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Wikimedia: Neon sign at Autonomy in Cambridge UK

For Bayesian inference we want to calculate the probability of the model
parameters given the data p(model|D).

Coalescent to describe the population genetic processes.
Mutation model to describe the change of genetic material over time.



Construction of a versatile estimator
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We calculate the Posterior distribution p(Θ|D) using Bayes’ rule

p(Θ|D) =
p(Θ)p(D|Θ)

p(D)

where p(D|Θ) is the likelihood of the parameters.



(almost) Felsenstein equation
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p(D|Θ, G) = p(G|Θ)p(D|G)

p(G|Θ) The probability density of a genealogy given parameters.

p(D|G)
The probability density of the data for a given
genealogy. Phylogeneticists know this as the tree-
likelihood.



Felsenstein equation
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p(D|Θ) =

∫
G

p(G|Θ)p(D|G)dG

p(G|Θ) The probability density of a genealogy given parameters.

p(D|G)
The probability density of the data for a given
genealogy. Phylogeneticists know this as the tree-
likelihood.



p(D|Θ) =

∫
G

p(G|Θ)p(D|G)dG

The number of possible genealogies is very
large and for realistic data sets, programs
need to use Markov chain Monte Carlo
methods.

Problem with integration formula
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Mode=0.009032.5% percentile=0.007

97.5% percentile=0.0118

Mean=0.00934
Median=0.00934

Bayesian inference: Θ = 0.00903

Watterson Estimator ΘW = 0.01003

Inference of population size
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Mutation-scaled population size, revisited
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By convention we express most results as the compound Nµ and an inheritance
scalar x, for simplicity we call this the mutation-scaled population size

Θ = xNµ,

where µ is the mutation rate per generation and per site. With a mutation rate
per locus we use θ.

for diploids: Θ = 4Nµ.

for haploids: Θ = 2Nµ.

For mtDNA in diploids with strictly maternal inheritance this leads to Θ =
2Nfµ, and if the sex ratio is 1 : 1 then Θ = Nµ

Most real populations do not behave exactly like Wright-Fisher populations,
therefore we subscript N and call it the effective population size Ne, and consider
Θ the mutation-scaled EFFECTIVE population size.



Mutation-scaled population size
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Gag Grouper starts out
as a female and later in
live becomes male.

By convention we express most results as the compound Nµ and an inheritance
scalar x, for simplicity we call this the mutation-scaled population size

Θ = xNµ,

where µ is the mutation rate per generation and per site. With a mutation rate
per locus we use θ.

for diploids: Θ = 4Nµ.

for haploids: Θ = 2Nµ.

For mtDNA in diploids with strictly maternal inheritance this leads to Θ =
2Nfµ, and if the sex ratio is 1 : 1 then Θ = Nµ

Most real populations do not behave exactly like Wright-Fisher populations,
therefore we subscript N and call it the effective population size Ne, and consider
Θ the mutation-scaled EFFECTIVE population size.

[ t]this is a test
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Humpback whales in the North Atlantic: Census population size around 12,000.
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using the data by Joe Roman and Stephen R. Palumbi (Science 2003 301: 508-
510)
Θ = 2N~µ 0.01529 Population size of the North Atlantic

population, estimated using migrate

N~ =
Θ
2µ 12,251 with µ = 5.2 × 10−8bp−1year−1 and a

generation time of 12 years

Ne = N~ +N| 24503 Sex ratio is 1:1

NB = 2Ne 49,006 ratio NB/Ne assumed, using other data

NT = NB
Njuveniles+Nadults

Nadults
78,410 from catch and survey data (used a ratio of 1.6)

using a mutation rate of Alter and Palumbi 2009; for nucDNA: 112, 000(45, 000 − 235, 000)

(Ruegg et al. Conservation Genetics (2013) 14:103–114)




