The Coalescent:
Inference using trees of ‘individuals’
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coeaslesce | koolles|

verb [ intrans. |

come together and form one mass or whole : the puddles had
coalesced into shallow streams | the separate details coalesce to
Jform a single body of scientific thought.
e [ trans. | combine (elements) in a mass or whole : {0 Aelp
coalesce the communily, they established an office.
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™ We have data: for example, microsatellite data, single
locus DNA sequences, or genomes

‘ we need to decide on a model to connect
the data with parameters of interest.

The coalescent represent the relationship among
individuals and can be expressed as a genealogy of
individuals genes (not individuals)
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Wright-Fisher population model Tadpole

» Allindividuals live one generation
and get replaced by their offspring

» All have same chance to reproduce, all are equally fit

» The number of individuals in the population is constant

As a result the individuals in generation n are a random draw from the previous
generation n — 1.
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Sewall Wright evaluated the probability that two randomly
chosen individuals in generation ¢ have a common ancestor
In generation

t — 1. If we assume that there are 2N chromosomes then the
probability of sharing a common ancestor in the last generation
IS
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Sewall Wright evaluated the probability that two randomly chosen
individuals in generation ¢ have a common ancestor in
generation ¢t — 1. If we assume that there are 2N chromosomes
then the probability of sharing a common ancestor in the last generation is

RN 1
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Sewall Wright evaluated the probability that two randomly chosen
individuals in generation ¢ have a common ancestor in
generation ¢t — 1. If we assume that there are 2N chromosomes
then the probability of sharing a common ancestor in the last generation is

1
1.0 x —
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Sewall Wright evaluated the probability that two randomly chosen
individuals in generation ¢ have a common ancestor in generation
t—1. If we assume that there are 2N chromosomes then the .
probability of sharing a common ancestor in the last generation is "

ETRTRSSFS TRTRITN.

The probability that two randomly picked chromosome do not have a common

ancestor is 1
1 — —
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The probability that two individuals share a common parent
after ¢ generations is

P(|N) = (1 —%) < (1 3}) X (1 _%) (%)

\

t times

(Y (2
B 2N ) \2N
where t is the number of generations with no coalescence. This formula is

known as the Geometric Distribution and we can calculate the expectation of
the waiting time until two random individuals coalesce as

E(t) = 2N
1 9 /1 OO ©2025 Peter Beerli



s LB

20
ﬁégo ©2025 Peter Beerli
Present



21 ﬁégo ©2025 Peter Beerli Present



22#;90 ©2025 Peter Beerli Present






WM

é
t



J, /\/
@w@

\\\\\M\\\H //
MM«MM%V

@
\\\ M

/o
D0 ©



—4

SRR g
l.ﬂfv.\v%“

> = &
K‘W\W/\IIAIIWI”/I /VI//
\\\\“\“‘\\\N’\‘\H\'\'V
e S
5 Hi
v N\ \/
ALy .\M"\
NMN%%\%‘
S S TS 2
/l// N > o
N ﬁ

P lirrebinne e




27#;90 ©2025 Peter Beerli Present



0.25

0.20

0.15

0.10

0.05

20
28 /1 OO ©2025 Peter Beerli

10000 random draw from a population with size 2N=20
leads to this distribution of times until two randomly chosen
individuals have a common ancestor. The observed mean
waiting time of 2N=20.34

50 100
generations



» For the time of coalescence in a sample of TWO , we will wait on average
2N generations assuming it is a Wright-Fisher population

» The model assumes that the generations are discrete and non-overlapping

» Real populations do not necessarily behave like a Wright-Fisher (the ‘ideal’
population)

» We assume that calculation using Wright-Fisher populations can be
extrapolated to real populations.
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Wright-Fisher
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Wright-Fisher Canning
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Wright-Fisher Canning Moran
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Wright-Fisher Canning Moran
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Sir J. F. C. Kingman described in 1982 the n-coalecent. He
showed the behavior of a sample of size n (instead of n |
will use £ in the following slides), and its probability structure
looking backwards in time.

General findings:

coalescence rate = ( ) = :

k) k(k — 1)

Once a coalescence happened k is reduced to k£ — 1 because
two lineages merged into one. He then imposed a continuous
approximation of the Canning’s exchangeable model to get

3§??HBS-©2025 Peter Beerli




Sewall Wrights result on two lineages can be approximated:

In the discrete Wright-Fisher model we calculate the probability of non-
coalescent during ¢ generation; By using a suitable timescale = such that
one unit of scaled time corresponds to 2N generations, we can simplify to
an continuous process

1 1
(1- ﬁ)t =(1- ﬁ)QN)T —e

as N goes to infinity. For more than two lineages we use Kingman'’s result
and use .
e_T(2)

for the probability of non-coalescence of k lineages during the time interval
7; we will elaborate on 7 soon.
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Sewall Wrights result on two lineages can be approximated:

In the discrete Wright-Fisher model we calculate the probability of non-
coalescent during ¢ generation; By using a suitable timescale 7 such that
one unit of scaled time corresponds to 2N generations, we can simplify to
an continuous process

1 1
1__75: 1__(2N)T —T
as N goes to infinity. For more than two lineages we us
and use .
e_T(2)

for the probability of non-coalescence of k lineages during the time interval
7; we will elaborate on 7 soon.
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The time scale here is arbitrary, for example if
the rate is 2 calls per 10 minutes; we then have
a probability of getting no call for 10 minutes as

e~ 10%2/10 — (135
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Time

If another type of call has a rate of 4 calls per 10
minutes; we then have a probability of getting
no call for 10 minutes as |

e 10X4/10 = 0.018
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Having two type of calls with different rates
2/10 and 4/10; we then have a probability of
getting no call for 10 minutes as

o—10%(2/10) o ,—10x(4/10) _ ,—10x(2/10+4/10) _ ) 9024



Time: 0
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Looking backward in time, the first coalescence
between two random individuals is the result of
a waiting process that depends on the sample
of size k£ and the total population size N.
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Looking backward in time, the first coalescence
between two random individuals is the result of
a waiting process that depends on the sample
of size k£ and the total population size N.

Using Kingman'’s coalescence rate and
Imposing a time scale we can approximate the
process with a exponential distribution:



with the scaled coalescence rate

k\ 1
A= —— X Prob
(2) L Pro
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Looking backward in time, the first coalescence
between two random individuals is the result of
a waiting process that depends on the sample
of size k£ and the total population size N.

Using Kingman'’s coalescence rate and

Imposing a time scale we can approximate the
process with an exponential distribution:

P(u;|N) = e %)\

(others do not coalesce)



, S\

with the scaled coalescence rate

Looking backward in time, the first coalescence
between two random individuals is the result of
a waiting process that depends on the sample
of size k£ and the total population size N.

Using Kingman'’s coalescence rate and

Imposing a time scale we can approximate the
process with a exponential distribution:

P(u;|N) = e %)\

k(k—1)  k(k—1)

A= (g);\f: 2(2N) ~ 4N
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We are now able to calculate the probability
of a whole relationship tree (Genealogy
(). We assume that each coalescence is
independent from any other:

P(G|N)

52 /1 OO ©2025 Peter Beerli



_____________________ U0 We are now able to calculate the probability

______________________ u1 of a whole relationship tree (Genealogy
us G). We assume that each coalescence is

........................... independent from any other:

P(G|N) — P(UQ’N,il,Zé)

............................. X

Y
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Uo \We are now able to calculate the probability

______________________ U1 of a whole relationship tree (Genealogy

us G). We assume that each coalescence is
........................... independent from any other:

P(G|N) = P(UO’N,il,ig)

.......................... U4 x P(u1|N, iz, i4)
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Uop

We are now able to calculate the probability
of a whole relationship tree (Genealogy
(). We assume that each coalescence is
independent from any other:

P(G‘N) = P(UQ‘N,il,ig)
X P(UHN, ig,i4)
x P(us|N,i3,4,15)
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Uop

We are now able to calculate the probability
of a whole relationship tree (Genealogy
(). We assume that each coalescence is
independent from any other:

P(G|N) = P(uQ’N,’il,ig)

X P(u1
X P(U3
X P(U4

N7 i37 24)
N,i3.4,15)

N,i12,13.4.5)



We are now able to calculate the probability
of a whole relationship tree (Genealogy
(). We assume that each coalescence is
independent from any other:

P(GlN) — P(UO|N77:177:2)
X P(u1 N, ’ig,?:4)
X P(U3 N, ’i3’4,’i5)

X P(u4|N,i1,2,%3,45)

ki (k: ~1) 9
AN

s k (k —-1) k(k
— J 4N U
11° 4N =11
]:O jZO
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------------------------- 1 coalescence is the sum of the expectations

________________________ uz for each interval. Each interval has
LT expectation
) S 0\
S VA us SRR TSy

this leads to the expectation for the time of
the most recent common ancestor

s o

— Sum of the expectation of each time interval =
) P ]z_% ki (ky — 1)

2 1 1 2
hm E(TMRCA) =2N+-N+-N+-=-N+—N+..=4N lim U(TMRCA) 4N
3 3 5! 15 k— 00
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If we know the genealogy G with certainty
then we can calculate the population size N.
Finding the maximum probability P(G|N, k) is
simple, we evaluate all possible values for N
and pick the value with the highest probability.

59 /1 OO ©2025 Peter Beerli
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then we can calculate the population size N.
Finding the maximum probability P(G|N, k) is
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If we know the genealogy G with certainty then we can calculate the population
size N. Finding the maximum probability P(G|N, k) is simple, we evaluate all
possible values for N and pick the value with the highest probability.
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Prob( G I N)
[+10743]
2.0

1.5

1.0

0.5

1000 10000 20000 30000 40000

Population size N

If an oracle gives us the true relationship tree GG then we can calculate the
population size N.

- k(k—1)\ 2
p(GIN,n) = [ ] exp <_U—k (4N )> 7N
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Prob( G I N)
[10743]
2.0

1.5

1.0
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Population size N
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70/100 ©2025 Peter Beeri k=2




Prob( G I N)
[10743]
2.0

1.5
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1000 10000 20000 30000 40000

Population size N

If an oracle gives us the true relationship tree GG then we can calculate the
population size N.

H“ k(k —1)\ 2
p(GIN.n) = =P <—uk (4N )> AN
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There are at least two problems with the oracle-approach:

» There is no oracle to gives us clear information!
» We do not record genealogies, our data are sequences, microsatellite loci!

» What about the variability of the coalescent?

72/100 ©2025 Peter Beerl



All genealogies were simulated with the same population size N, = 10, 000
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20 40 60 80 100
Time to MRCA

[103 generations]

MRCA = most recent common ancestor (last node in the genealogy)
74 /100 ©2025 Peter Beerli



» Allindividuals have the same fitness (no selection).

» All individuals have the same chance to be in the sample (random
sampling).

» The coalescent allows only merging two lineages per generation. This
restricts us to to have a much smaller sample size than the population size.

n << N

» Yun-Xin Fu (2005) described the exact coalescent for the Wright-Fisher

model and derived a maximal sample size n<+/4N for a diploid population.

Although this may look like a severe restriction for the use of the

coalescence in small populations, it turned out that the coalescence is rather

robust and that even sample sizes close to the effective population size are
75/1%%’[ biasing immensely.

©2025 Peter Beerli



Ignoring multimerger coalescences

Here are the exact probabilities of 0, 1, or more coalescences with 10 lineages
in diploid populations of different sizes:

Population size  Coalescences within a single generation

100 0.79560747 0.18744678 0.01694575

1000 0.97771632 0.02209806 0.00018562
10000 0.99775217 0.00224595 0.00000187

Note that increasing the population size by a factor of 10 reduces the
coalescent rate for pairs by about 10-fold, but reduces the rate for triples (or
more) by about 100-fold.
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> Large samples coalesce on average in 4N generations.
» The time to the most recent common ancestor (TMRCA) has a large variance

» Evena sample with few individuals can most often recover the same TMRCA
as a large sample.

D The sample size should be much smaller than the population size, although
severe problems appear only with sample sizes of the same magnitude
as the population size, or with non-random samples because Kingman’s
coalescence process assumes that maximally two sample lineages coalesce
in any generation.

» With a known genealogy we can estimate the population size. Unfortunately,

the true genealogy of a sample is rarely known.
77/100 e2o025 geter Beerl| oY P Y
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» Finite populations loose alleles due to genetic drift
» Mutation introduces new alleles into a population at rate

» With 2N chromosomes we can expect to see every generation 2Ny new
mutations. The population size N is positively correlated with the mutation
rate p.

» with genetic data sampled from several individuals we can use the mutational
variability to estimate the population size.
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Population size

The observed genetic variability

S=f(N,u,n).
Different N and appropriate p can give the same number of mutations. For
example, for 100 loci sampled from 20 individuals with 1000bp each, we get :

A

nY i AN S 0%

1250 10~° 0.05 153.95 16.25
12500 10=°% 0.05 152.89 16.05

Using genetic variability alone therefore does not allow to disentangle N and .
With multiple dated samples and known generation time we can estimate /N and
1t iIndependently.
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By convention we express most results as the compound N and an inheritance

scalar x, for simplicity we call this the mutation-scaled population size
© =xNpu,

where i Is the mutation rate per generation and per site. With a mutation rate
per locus we use 6.

» for diploids: © = 4N p.

D for haploids: © = 2N p.
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. . k
P(no coalescence with n lineages) = exp (—7‘ (2)>

scaling time 7 by the population size 2N and using ¢ in generations we get

T = t55, this then leads to

1 k(k — 1)
2N 2

When we use DNA data, we assume there is a mutation model with a mutation
rate 1; we include that in our scaling and use time ¢ as scaled by expected
mutation rate per generation and © = 4N u:

P(coalescence at tg +t) = exp(—tA)A with A\ =

. 2 k(k—1
P(a coalescent at time ¢y + t|tg) = 6exp(—t ( 5 ))
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» Each site has a single coalescent tree

» Loci in close proximity share most likely the same coalescent tree, but
dependent on the magnitude of the recombination rate, loci may be linked
or unlinked.

» We assume that loci on different chromosomes are independent.

> Usually, we treat each locus as independent and combine the single locus
estimates.

84 /1 OO ©2025 Peter Beerli
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Sequence data has some sites in —
some individuals that are different
than others

Population model

|

Analysis method

|
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Mutation model (finite vs infinite)

the Coalescent

Summary statistics
Maximum likelihood
Bayesian Inference



Sequence data has some sites in = Mutation model (finite vs infinite)
some individuals that are different
than others

Population model the Coalescent

|

Analysis method

|

Summary statistics
Maximum likelihood
Bayesian Inference
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Using the infinite sites model we use the number of variable sites S per locus to
calculate the mutation-scaled population size:

S

HW — n—1

k=1

from a sample of n individuals. For a single population the Watterson’s estimator
works marvelously well, but it is vulnerable to population structure.

=

Watterson’s 6y, uses a mutation rate per locus! To compare with other work use
mutation rate per site.
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For Bayesian inference we want to calculate the probability of the model
parameters given the data p(model|D).

Coalescent to describe the population genetic processes.
Mutation model to describe the change of genetic material over time.




We calculate the Posterior distribution p(©|D) using Bayes’ rule




p(D|®,G) = p(G|O)p(D|G)

The probability density of a genealogy given parameters.

The probability density of the data for a given
genealogy. Phylogeneticists know this as the tree-
likelihood.
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H(DI®) = | p(GIO)p(DIC)G
G
The probability density of a genealogy given parameters.

The probability density of the data for a given
genealogy. Phylogeneticists know this as the tree-
likelihood.
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-_-_.l_-afrgé"and for reahstlc data sets programs

to use Markov ohaln Monte Carlo

“need
methods




2.5% percentile=0.007  Mode=0.00903

Freq

0.020 A

0.015-

0.010 A

0.005 -

0.000

0.000
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0.005

o

Median=0.00934
Mean=0.00934

97.5% percentile=0.0118

P
A . .
— uniform prior
0.010 0.015
9 Bayesian inference: © = 0.00903

Watterson Estimator Oy, = 0.01003



By convention we express most results as the compound N and an inheritance
scalar x, for simplicity we call this the mutation-scaled population size

© =xNpu,
where 1 is the mutation rate per generation and per site. With a mutation rate
per locus we use 6.

» for diploids: ©® = 4N p.
» for haploids: ©® = 2N .

» For mtDNA in diploids with strictly maternal inheritance this leads to © =
2N, and if the sex ratiois 1 : 1 then © = Ny

Most real populations do not behave exactly like Wright-Fisher populations,
therefore we subscript NV and call it the effective population size N,, and consider
O the mutation-scaled EFFECTIVE population size.
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where p is the mutation rate per genera’uon and per site. With a mutation rate
per locus we use 6. —

» for diploids: © = 4N p.
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Historical humpback whale population size

- .ll.ll. - I.

-, II?ﬁm‘ 5 ! bk -

using the data by Joe Roman and Stephen R. Pélumbl (Smence 2003 301
510)

S =2 N _0.01529 Populatlon size of North Atlantlc "'*r
populatlon est|mate us

T,
Na= o
Ne = NQ _|_ Nd . L
Hog s A . |
Nigr==t 2 #@: = = 49,006 ‘ratio Np/N. assumed, using other data
Ny = Ng Muver}ﬂazzgad“”s 78,410 from catch and survey data (used a ratio of 1.6)
using a mutation rate of Alter and Palumbi 2009; for D00(45, 000 — 235, 000)

(Ruegg et al. Conservation Genetics (2013) 14:103—1
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