


o calculate the probability that we wait the time interval v until a coalescent

» calculate the probability of the particular coalescent event
» multiply these probabilities for all time intervals
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» Population growth (two parameters), fluctuations, bottlenecks
» Migration among populations (potentially thousands, parameters)
» Population splitting (many parameters)

» Effect of assumption violation
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Populations are rarely completely stable through time, and attempts have been
made to model population growth or shrinkage using linear, exponential or
more general approaches.
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Populations are rarely completely stable through time,
and attempts have been made to model population
growth or shrinkage using linear, exponential or more
general approaches. For example exponential growth
could be modeled as

dN
—— —»rN
i
N; = Nge™ "t L
Ny = 80 5
r=0.02 %
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For constant population size we found

k(k 1) 2
p(G|O) = He—w

Relaxing the constant size to exponential
growth and using g = r/u leads to
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Problems with the exponential model: Even
with moderately shrinking populations, it is
possible that the sample lineages do not
coalesce. With growing populations this
problem does not occur. This discrepancy
leads to an upwards biased estimate of the
growth rate for a single locus. Multiple locus
estimates improve the results.
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Random fluctuations of the population size are most often ignored. BEAST
(and to some extent MIGRATE) can handle such scenarios. BEAST is using
a full parametric approach (skyride, skyline) whereas MIGRATE uses a non-
parametric approach for its skyline plots that has the tendency to smooth the
fluctuations too much; compared to BEAST.

Past Present
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BEAST

MIGRATE
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k(k —1)

The single population coalescence rate is N

Changes for two populations to

)
£
—
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IM: isolation with migration;
co-estimation of divergence
parameters, population
sizes and migration rates.
Not all datasets can
separate migration from
divergence, and multiple
loci are helpful.

Hey 2010
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if we consider only a single individual that is today in population A. We also
know that its ancestor was a member of population B then it will be only a
matter of time to change the population label, but when?

Today Past
e

(Beerli P, Ashki H., Mashayekhi S., and Palczewski M. 2022. Population divergence time
estimation using individual lineage label switching. G3 Genes — Genomes — Genetics, 12(4),URL
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Looking backwards in time we could think about the risk of A turning into B
which becomes larger and larger the further back in time the lineage goes.
In the coalescence framework we are well agcustomed to that thinking: we
use the risk of a coalescent or the risk of a phigration event. This risk can be
expressed using the hazard function (or faiure rate). Here we use the hazard
function of the Normal distribution.

Today Past

(Beerli P., Ashki H., Mashayekhi S., and Palczewski M. 2022. Population divergence time
estimation using individual lineage label switching. G3 Genes — Genomes — Genetics, 12(4),URL

/ https://doi.org/10.1093/g3journal/jkac040.)
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One lineage is easy, but what about the
genealogy? Each lineage is at risk of being
iIn the ancestral population, thus we need to
consider coalescences, migration events, and
population label changing events. This results
in genealogies that are realizations of migration
and population splitting events.
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Comparison of estimated
versus simulated
divergence times for
different number of loci
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Comparison of estimated
versus simulated
divergence times for

different number of loci
B A
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Comparison of estimated
versus simulated
divergence times for

different number of loci
B A
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Estimation of splitting dates of 6 subspecies of pygmy rattle
snakes using MIGRATE (data from Kubatko et al. 2011)
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Estimation of splitting dates of
6 subspecies of pygmy rattle
snakes using MIGRATE (data
from Kubatko et al. 2011)
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Estimation of splitting dates of 6
subspecies of pygmy rattle snakes
using MIGRATE (data from Kubatko
et al. 2011)

Sistrurus miliaris miliaris

Model Log(mL) LBF Model-probability Sietrurs mitiars barbour
1: 3 species: -15887.49 0.00 1.0000
2: 6 species: -15961.95 -74.46 0.0000

Sistrurus miliaris streckeri

Sistrurus catenatus tergeminus

Sistrurus catenatus edwardsii

Sistrurus catenatus catenatus
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Wright-Fisher Canning Moran

u\i/r«q\g‘

$3S5454tE

Ugffspring ~ 1 ngfspring =& Ooffspring — 2N
E(t) =2N E(t) =2N/x E(t) = %(2]\7)2
generation time g = 1 g=1 g=2N
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Values of a that are in the red area are a better model fit than those outside. a.<1 is the f-coalescent, a=1 is the n-coalescent
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Model selection using relative marginal likelihoods of DNA sequence

from the flu (H1N1), Malaria parasites, Humpback whales.
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» Required samples (small samples/ deep coalescence)
o Average over long time

» Recombination
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» The time to the most recent common ancestor is robust to different sample

sizes.

» Simulated sequence data from a single population have shown that after 8

individuals you should better add another locus than more individuals.

0.1

Frequency
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Medium variability DNA dataset: Mutation-scaled population size © and
mutation-scaled migration rate M versus sample size for 2, 5, and 10 loci. The

true ©1 = 0.01 is marked with the dotted gray line; M = 100
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Researchers from the frequency-based camp claim that the coalescence-based
methods are working on an evolutionary time-scale and therefore are not really
usable in a conservation genetics or management context.

There is some truth to this claim because the time scale for the genealogies is in
generations and with large populations such genealogies are deep, but ...
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~500 simulated datasets
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~500 simulated datasets
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~500 simulated datasets
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~500 simulated datasets
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» We will have a lab later this week where you will learn about Bayesian model
selection with MIGRATE using a lab where we differentiate between 8 simple
population models that include "speciation” (or population splitting) with and
without migration using a data set of complete genomes of Zika viruses.
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