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Θ = 4Neµ

calculate the probability that we wait the time interval u until a coalescent

calculate the probability of the particular coalescent event

multiply these probabilities for all time intervals
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Population growth (two parameters), fluctuations, bottlenecks

Migration among populations (potentially thousands, parameters)

Population splitting (many parameters)

Effect of assumption violation
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Populations are rarely completely stable through time, and attempts have been
made to model population growth or shrinkage using linear, exponential or
more general approaches.
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Populations are rarely completely stable through time, and attempts have been
made to model population growth or shrinkage using linear, exponential or
more general approaches.

In a small population lineages coalesce quickly

In a large population lineages coalesce slowly

This leaves a signature in the data.
We can exploit this and estimate the
population growth rate g jointly with
the current population size Θ.
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Populations are rarely completely stable through time,
and attempts have been made to model population
growth or shrinkage using linear, exponential or more
general approaches. For example exponential growth
could be modeled as

dN

dt
= rN

Nt = N0e
−rt

N0 = 80

r = 0.02

Past Present



For constant population size we found

p(G|Θ) =
∏

j

e−uj
k(k−1)

Θ
2

Θ

Relaxing the constant size to exponential
growth and using g = r/µ leads to

p(G|Θ0, g) =
∏

j

e
−(tj−tj−1)

k(k−1)

Θ0e−gt 2

Θ0e−gt

Past

PresentExtensions of the basic coalescent
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Problems with the exponential model: Even
with moderately shrinking populations, it is
possible that the sample lineages do not
coalesce. With growing populations this
problem does not occur. This discrepancy
leads to an upwards biased estimate of the
growth rate for a single locus. Multiple locus
estimates improve the results.

Past

Present



Grow-A-Frog

15 /64 ©2023 Peter Beerli



Grow-A-Frog

16 /64 ©2023 Peter Beerli

0.00 0.01 0.02 0.03 0.04 0.05
Theta

1000

500

0

500

1000

1500

2000

2500

3000

Gr
ow

th

2D Density Histogram with 95% Contour

0.00000

0.00045

0.00090

0.00135

0.00180

0.00225

0.00270

0.00315

De
ns

ity



Extensions of the basic coalescent

17 /64 ©2023 Peter Beerli

Past Present

Random fluctuations of the population size are most often ignored. BEAST

(and to some extent MIGRATE) can handle such scenarios. BEAST is using
a full parametric approach (skyride, skyline) whereas MIGRATE uses a non-
parametric approach for its skyline plots that has the tendency to smooth the
fluctuations too much, compared to BEAST.
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MIGRATE

BEASTExtensions of the basic coalescent
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Accommodating more events
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Time

An analogy
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The single population coalescence rate is k(k − 1)

4N
.

Changes for two populations to
k1(k1 − 1)

Θ1
+
k2(k2 − 1)

Θ2
+ k1M2,1 + k2M1,2
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Structured populations
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Immigration into hybrid zone?

Hotz et al (2013). Balancing a cline by influx of migrants: ... . Journal of Heredity, 104(1):57–71, 2013.26 /64 ©2023 Peter Beerli
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Obvious migration pattern

Beerli, P. (2009). How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use.
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0.41 MYR

central western

 Ancestral Ne (thousands): 8.4

0.41***

0.092**

IM: isolation with migration;
co-estimation of divergence
parameters, population
sizes and migration rates.
Not all datasets can
separate migration from
divergence, and multiple
loci are helpful.

Population splitting
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(Beerli P., Ashki H., Mashayekhi S., and Palczewski M. 2022. Population divergence time
estimation using individual lineage label switching. G3 Genes – Genomes – Genetics, 12(4),URL
https://doi.org/10.1093/g3journal/jkac040.)

if we consider only a single individual that is today in population A. We also
know that its ancestor was a member of population B then it will be only a
matter of time to change the population label, but when?

Today Past

Population splitting
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(Beerli P., Ashki H., Mashayekhi S., and Palczewski M. 2022. Population divergence time
estimation using individual lineage label switching. G3 Genes – Genomes – Genetics, 12(4),URL
https://doi.org/10.1093/g3journal/jkac040.)

Looking backwards in time we could think about the risk of A turning into B
which becomes larger and larger the further back in time the lineage goes.
In the coalescence framework we are well accustomed to that thinking: we
use the risk of a coalescent or the risk of a migration event. This risk can be
expressed using the hazard function (or failure rate). Here we use the hazard
function of the Normal distribution.

Today Past

Population splitting

35/64 ©2023 Peter Beerli



Population splitting
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estimation using individual lineage label switching. G3 Genes – Genomes – Genetics, 12(4),URL
https://doi.org/10.1093/g3journal/jkac040.)

One lineage is easy, but what about the
genealogy? Each lineage is at risk of being
in the ancestral population, thus we need to
consider coalescences, migration events, and
population label changing events. This results
in genealogies that are realizations of migration
and population splitting events.
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Model, τ Genealogy

Genealogy Sequence data

Sequence Data Model τ̂

Comparison of estimated
versus simulated
divergence times for
different number of loci

B A

A

τ

(Beerli P., Ashki H., Mashayekhi S., and Palczewski M. 2022. Population divergence time estimation using individual lineage label
switching. G3 Genes – Genomes – Genetics, 12(4),URL https://doi.org/10.1093/g3journal/jkac040.)
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(Beerli P., Ashki H., Mashayekhi S., and Palczewski M. 2022. Population divergence time estimation using individual lineage label
switching. G3 Genes – Genomes – Genetics, 12(4),URL https://doi.org/10.1093/g3journal/jkac040.)
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Comparison of estimated
versus simulated
divergence times for
different number of loci

B A

A

(Beerli P., Ashki H., Mashayekhi S., and Palczewski M. 2022. Population divergence time estimation using individual lineage label
switching. G3 Genes – Genomes – Genetics, 12(4),URL https://doi.org/10.1093/g3journal/jkac040.)
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40 /64 ©2023 Peter Beerli

1 2

1

1 2

3

1 2

1

1 2

3
(a) (b) (c) (d)

(Beerli P., Ashki H., Mashayekhi S., and Palczewski M. 2022. Population divergence time
estimation using individual lineage label switching. G3 Genes – Genomes – Genetics, 12(4),URL
https://doi.org/10.1093/g3journal/jkac040.)
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Estimation of splitting dates of 6 subspecies of pygmy rattle
snakes using MIGRATE (data from Kubatko et al. 2011)

Phylogenetics of pygmy rattle snakes
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S. c. catenatus
S. c. edwardsii

S. c. tergeminus
S. m. barbouri
S. m. miliaris

S. m. streckeriEstimation of splitting dates of
6 subspecies of pygmy rattle
snakes using MIGRATE (data
from Kubatko et al. 2011)

Population splitting
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Population splitting: Pygmy rattle snakes
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Model Log(mL) LBF Model-probability

1: 3 species: -15887.49 0.00 1.0000

2: 6 species: -15961.95 -74.46 0.0000

0.001

Sistrurus miliaris streckeri

Sistrurus miliaris miliaris

Sistrurus catenatus edwardsii

Sistrurus miliaris barbouri

Sistrurus catenatus tergeminus

Sistrurus catenatus catenatus

Estimation of splitting dates of 6
subspecies of pygmy rattle snakes
using MIGRATE (data from Kubatko
et al. 2011)



Wright-Fisher Canning Moran

σ2
offspring ' 1 σ2

offspring = x σ2
offspring = 2

2N

E(t) = 2N E(t) = 2N/x E(t) = 1
2(2N)2

generation time g = 1 g = 1 g = 2N

Offspring number is a random variable
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The habitat affects the potential of
producing offspring and the quality
differences are unpredictable. This
will lead to a higher variance of the
number of offspring: the Canning
model allows arbitrary fixed variance
of offspring number. We can treat this
variance as a random variable.

Offspring number is a random variable
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Extensions of Coalescence theory
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Values of α that are in the red area are a better model �t than those outside. α<1 is the f-coalescent , α=1 is the n-coalescent

Model selection using relative marginal likelihoods of DNA sequence
from the flu (H1N1), Malaria parasites, Humpback whales.

Different α: model comparison with real data

49 /64 ©2023 Peter Beerli



Robustness of the coalescence
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Violating assumptions
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Required samples (small samples/ deep coalescence)

Average over long time

Recombination
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Required samples is small
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The time to the most recent common ancestor is robust to different sample
sizes.

Simulated sequence data from a single population have shown that after 8
individuals you should better add another locus than more individuals.



Required number of samples is small
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Medium variability DNA dataset: Mutation-scaled population size Θ and
mutation-scaled migration rate M versus sample size for 2, 5, and 10 loci. The
true ΘT = 0.01 is marked with the dotted gray line; M = 100



Average of parameters over long time
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Researchers from the frequency-based camp claim that the coalescence-based
methods are working on an evolutionary time-scale and therefore are not really
usable in a conservation genetics or management context.
There is some truth to this claim because the time scale for the genealogies is in
generations and with large populations such genealogies are deep, but ...



Average of parameters over long time
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Ignoring recombination
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Ratio of recombination rate versus mutation rate R

∼500 simulated datasets
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Averages with 95% credibility intervals of runs with different mutation-scaled
recombination rates R = C/µ. The dotted lines mark the ’true’ values.
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Ratio of recombination rate versus mutation rate R

∼500 simulated datasets
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Upward bias

Averages with 95% credibility intervals of runs with different mutation-scaled
recombination rates R = C/µ. The dotted lines mark the ’true’ values.



∼500 simulated datasets

Ratio of recombination rate versus mutation rate R
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Averages with 95% credibility intervals of runs with different mutation-scaled
recombination rates R = C/µ. The dotted lines mark the ’true’ values.

Ignoring recombination
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∼500 simulated datasets

Ratio of recombination rate versus mutation rate R

sc
al

ed
m

ig
ra

tio
n

ra
te
M̂

Averages with 95% credibility intervals of runs with different mutation-scaled
recombination rates R = C/µ. The dotted lines mark the ’true’ values.

Downward bias

Ignoring recombination
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Outlook
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We will have a lab later this week where you will learn about Bayesian model
selection with MIGRATE using a lab where we differentiate between 8 simple
population models that include ”speciation” (or population splitting) with and
without migration using a data set of complete genomes of Zika viruses.


