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Θ = 4Neµ

calculate the probability that we wait the time interval u until a coalescent

calculate the probability of the particular coalescent event

multiply these probabilities for all time intervals
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Population growth (two parameters), fluctuations, bottlenecks

Migration among populations (potentially thousands, parameters)

Population splitting (many parameters)

SNPs, site frequency spectra, mutation models

Effect of assumption violation
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Populations are rarely completely stable through time, and attempts have been
made to model population growth or shrinkage using linear, exponential or
more general approaches.
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Populations are rarely completely stable through time, and attempts have been
made to model population growth or shrinkage using linear, exponential or
more general approaches.

In a small population lineages coalesce quickly

In a large population lineages coalesce slowly

This leaves a signature in the data.
We can exploit this and estimate the
population growth rate g jointly with
the current population size Θ.
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Populations are rarely completely stable through time,
and attempts have been made to model population
growth or shrinkage using linear, exponential or more
general approaches. For example exponential growth
could be modeled as

dN

dt
= rN

Nt = N0e
−rt

N0 = 80

r = 0.02

Past Present



For constant population size we found

p(G|Θ) =
∏
j

e−uj
k(k−1)

Θ
2

Θ

Relaxing the constant size to exponential
growth and using g = r/µ leads to

p(G|Θ0, g) =
∏
j

e
−(tj−tj−1)

k(k−1)

Θ0e
−gt 2

Θ0e−gt

Past

PresentExtensions of the basic coalescent
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Problems with the exponential model: Even
with moderately shrinking populations, it is
possible that the sample lineages do not
coalesce. With growing populations this
problem does not occur. This discrepancy
leads to an upwards biased estimate of the
growth rate for a single locus. Multiple locus
estimates improve the results.

Past

Present
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Past Present

Random fluctuations of the population size are most often ignored. BEAST and
REVBAYES (and to some extent MIGRATE) can handle such scenarios. BEAST

and REVBAYES are using a full parametric approach (skyride, skyline, skyfish)
whereas MIGRATE uses a non-parametric approach for its skyline plots that has
the tendency to smooth the fluctuations too much, compared to BEAST.



BEAST

MIGRATERise and Fall of Steppe Bisons
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Comparison of the skyline plots of simulated influenza dynamics analyzed by MIGRATE and BEAST. The x-axis is the time in years and the y-axis
is effective population size. The data are sequences from 250 individuals sampled at regular intervals over 5 years. The dashed curve is the
actual population size deduced from the true genealogy; black lines are the mean results of MIGRATE or BEAST; gray area is the 95% credibility
interval. BEAST skyline matches the actual population size better than all other methods. Simulation and graphs courtesy of Trevor Bedford.
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Software: popvizard at https://github.com/pbeerli/popvizard.git

Two or more bottlenecks
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Accommodating more events
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Time

An analogy
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Time
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The single population coalescence rate is k(k − 1)

4N
.

Changes for two populations to
k1(k1 − 1)

Θ1
+

k2(k2 − 1)
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Structured populations
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Obvious migration pattern

Beerli, P. (2009). How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use.
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0.41 MYR

central western

 Ancestral Ne (thousands): 8.4

0.41***

0.092**

IM: isolation with migration;
co-estimation of divergence
parameters, population
sizes and migration rates.
Not all datasets can
separate migration from
divergence, and multiple
loci are helpful.

Population splitting

Hey 201035 /85 ©2024 Peter Beerli



Population splitting
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(Beerli P., Ashki H., Mashayekhi S., and Palczewski M. 2022. Population divergence time
estimation using individual lineage label switching. G3 Genes – Genomes – Genetics, 12(4),URL
https://doi.org/10.1093/g3journal/jkac040.)

if we consider only a single individual that is today in population A. We also
know that its ancestor was a member of population B then it will be only a
matter of time to change the population label, but when?

Today Past

Population splitting
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(Beerli P., Ashki H., Mashayekhi S., and Palczewski M. 2022. Population divergence time
estimation using individual lineage label switching. G3 Genes – Genomes – Genetics, 12(4),URL
https://doi.org/10.1093/g3journal/jkac040.)

Looking backwards in time we could think about the risk of A turning into B
which becomes larger and larger the further back in time the lineage goes.
In the coalescence framework we are well accustomed to that thinking: we
use the risk of a coalescent or the risk of a migration event. This risk can be
expressed using the hazard function (or failure rate). Here we use the hazard
function of the Normal distribution.

Today Past

Population splitting
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Population splitting
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estimation using individual lineage label switching. G3 Genes – Genomes – Genetics, 12(4),URL
https://doi.org/10.1093/g3journal/jkac040.)

One lineage is easy, but what about the
genealogy? Each lineage is at risk of being
in the ancestral population, thus we need to
consider coalescences, migration events, and
population label changing events. This results
in genealogies that are realizations of migration
and population splitting events.



Population splitting
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Model, τ Genealogy

Genealogy Sequence data

Sequence Data Model τ̂

Comparison of estimated
versus simulated
divergence times for
different number of loci

B A

A

τ

(Beerli P., Ashki H., Mashayekhi S., and Palczewski M. 2022. Population divergence time estimation using individual lineage label
switching. G3 Genes – Genomes – Genetics, 12(4),URL https://doi.org/10.1093/g3journal/jkac040.)
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(Beerli P., Ashki H., Mashayekhi S., and Palczewski M. 2022. Population divergence time estimation using individual lineage label
switching. G3 Genes – Genomes – Genetics, 12(4),URL https://doi.org/10.1093/g3journal/jkac040.)
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Comparison of estimated
versus simulated
divergence times for
different number of loci

B A

A

(Beerli P., Ashki H., Mashayekhi S., and Palczewski M. 2022. Population divergence time estimation using individual lineage label
switching. G3 Genes – Genomes – Genetics, 12(4),URL https://doi.org/10.1093/g3journal/jkac040.)
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(Beerli P., Ashki H., Mashayekhi S., and Palczewski M. 2022. Population divergence time
estimation using individual lineage label switching. G3 Genes – Genomes – Genetics, 12(4),URL
https://doi.org/10.1093/g3journal/jkac040.)



Population splitting: Pygmy rattle snakes
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Model Log(mL) LBF Model-probability

1: 3 species: -15887.49 0.00 1.0000

2: 6 species: -15961.95 -74.46 0.0000

0.001

Sistrurus miliaris streckeri

Sistrurus miliaris miliaris

Sistrurus catenatus edwardsii

Sistrurus miliaris barbouri

Sistrurus catenatus tergeminus

Sistrurus catenatus catenatus

Estimation of splitting dates of 6
subspecies of pygmy rattle snakes
using MIGRATE (data from Kubatko
et al. 2011)



Robustness of the coalescence
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Violating assumptions
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Required samples (small samples/ deep coalescence)

Average over long time

Recombination
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Required samples is small
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The time to the most recent common ancestor is robust to different sample
sizes.

Simulated sequence data from a single population have shown that after 8
individuals you should better add another locus than more individuals.



Required number of samples is small
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Medium variability DNA dataset: Mutation-scaled population size Θ and
mutation-scaled migration rate M versus sample size for 2, 5, and 10 loci. The
true ΘT = 0.01 is marked with the dotted gray line; M = 100



Average of parameters over long time
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Researchers from the frequency-based camp (those that use FST ) claim that
the coalescence-based methods are working on an evolutionary time-scale and
therefore are not really usable in a conservation genetics or management context.
There is some truth to this claim because the time scale for the genealogies is in
generations and with large populations such genealogies are deep, but ...



Average of parameters over long time
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Ignoring recombination
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Ratio of recombination rate versus mutation rate R
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Averages with 95% credibility intervals of runs with different mutation-scaled
recombination rates R = C/µ. The dotted lines mark the ’true’ values.
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Ratio of recombination rate versus mutation rate R
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Upward bias

Averages with 95% credibility intervals of runs with different mutation-scaled
recombination rates R = C/µ. The dotted lines mark the ’true’ values.



∼500 simulated datasets

Ratio of recombination rate versus mutation rate R
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Averages with 95% credibility intervals of runs with different mutation-scaled
recombination rates R = C/µ. The dotted lines mark the ’true’ values.

Ignoring recombination
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∼500 simulated datasets

Ratio of recombination rate versus mutation rate R
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Averages with 95% credibility intervals of runs with different mutation-scaled
recombination rates R = C/µ. The dotted lines mark the ’true’ values.

Downward bias

Ignoring recombination
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alternative titles:
“How to not manipulate your data” or “Down the rabbit hole?”

Mutation model afffect model parameter inference
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the Coalescent and Tree depth
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the Coalescent and detected mutations
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Watterson’s Θ =
Sn∑n−1
i=i

1
i

Ewens (2004) points out that the number of variable sites Sn is not a sufficient
statistic for Θ and that the data may hold more information. And true! Several
researchers developed MCMC-based approaches to estimate Θ, for example
using Bayesian inference:

p(Θ|D,µ) =
p(Θ)

∫
G p(G|Θ)p(D|G,µ)dG

p(D|µ)

the Coalescent to estimate population size
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Two main methods:

Aligned DNA sequences for many loci: We need a finite mutation model:
many to pick from: Jukes-Cantor, Kimura, Felsenstein, Tamura-Nei, GTR
These models usually assume a Markov property

Single nucleotide polymorphism data: Usually these are treated as diallelic
markers, to fit the infinite sites model used in the Site Frequency spectra

How to deliver the mutations to the inference method
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Early → Mid → Late

Early: Mutation models became a ”thing” when electrophoretic allozyme markers
were used to look at variability in natural populations, starting with papers such by
Lewontin and Hubby (∼1964). The infinite allele model became famous

A B C

E F

Mutation model history
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Mid (popgen): These were the haydays of enzyme electrophoresis and many
population genetic studies based on allozymes were generated, using the infinite
allele model (Kimura and Crow, 1964) or a variant of the ladder model ( Ohta and
Kimura, 1973) that then became the standard for microsatellite data.

Mutation model history

66 /85 ©2024 Peter Beerli



Mid (phylogeny): Researchers started
to sequence DNA, such as 5S rRNA and
mtDNA, and were able to work on phylogenetic
trees of species; Likelihood analyses of
phylogenetic problems using finite mutation
models became feasible. Models that explicitly
model the transition between nucleotides over
the course of time, many variants created a
considerable alphabet soup of models: JC69,
K2P, F81, F84, HKY, TN93, GTR, ...

.

U Y

μ

μ

1−μ1−μ

Mutation model history
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Mid - Late: Some population geneticists started to tinker with sequence data
and used the infinite sites model (Kimura 1969). For example, Strobeck (1984)
evaluated the population size of two Drosophila species assuming an infinite sites
model.

Drosophila virilis: n=10, a1=4, a2=6

Infinite allele: θEwens = 1.97

Variable site: θWatterson = 0.35

Infinite site: θStrobeck = 0.34

Mutation model history
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Late: It seems that (almost) all phylogeneticists use the time reversible GTR finite
mutation model now. In population genetics (aka population genomics) we used (and
some still do ©) for a short time finite mutation models in software that used Markov
chain Monte Carlo methods. But then, it seems, many abandoned them because the
programs were either not up to the task (memory problems) or then too slow. Site
frequency spectra were embraced and allowed to analyze very complex population
models.

https://radcamp.github.io/IBS2019/07 momi2 API.html

Mutation model history: “Today’s state of the Art”
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A major and minor allele has to be picked (usually, we use an
outgroup to define the ancestral allele; or pick the major allele as
the ancestral and call it the ‘folded’ SFS)
With low variability and no sequencing error, this works great

With high variability, one may discard the tri-allelic states or pick
the two most common as the bi-allelic marker

If we assume there are sequencing errors, then many will not
recognize derived alleles that occur only once as a real allele

How to ‘accommodate’ data to the infinite sites model
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Θ = 0.001

Samples = 1000 (10, 000bp)

Variable sites = 36/10, 000

Θ = 0.1
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Variable sites = 2012/10, 000
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Site frequency spectra based on SNPs
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SNPs and population parameters: Single nucleotide polymorphisms are
usually reported as an ancestral allele and the alternative allele (2-state). This works
fine under the assumption that populations are small and a mutation rate is small.

Modern parallel sequencing allows us to retrieve SNPs without bias; with enough
coverage, we can find them all, and if we do not remove lower frequency alleles,
then we may get good estimates of the site frequency spectrum.

Removal of low-frequency SNPs without correction will lead to errors.

SNP ascertainment issues

72 /85 ©2024 Peter Beerli



Population model parameter estimation: The coalescent with many
samples becomes rather intractable when we assume complicating forces such as
gene flow, recombination, population size changes, admixture, population splitting.
This was one of the reasons for the development of methods that depend on the SFS,
but one may wonder whether we have traded one problem with another untractable
one.

Analyses in population genomics
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Momi2: momi (MOran Models for Inference)
is a Python package that computes the
expected sample frequency spectrum (SFS)
and uses it to fit demographic history. In
short: we take SNP dataset with n population,
create a multipopulation SFS, create a
specific population model and find parameter
setting of this particular model so that we can
generate an expected SFS that is close the
estimated SFS. We assume an infinite sites
mutation model.

Example of a site frequency spectrum method
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A sample of a single population:

Analyses in population genomics
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A sample of a single population:
Infinite mutation model:
allelic state = Identity by descent

Analyses in population genomics
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A sample of a single population:
Finite mutation model simulation:
allelic state ̸= Identity by descent

Analyses in population genomics
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The last example shows three different alleles: Even if we would only
see 2 alleles, then we may guess that the mutation rate with finite mutation models
may be higher than with an infinite mutation model.

Variability is the measure for almost everything in population genetics! Low
variability suggests low population size; with little variability, we also assume that
two populations are more similar, leading to estimate high gene flow, or recent
divergence times, ....

Scenarios that we should explore, but I do not see lots of work on that.

Infinite sites (aka 2-allele SNPs) vs finite sites models

Analyses in population genomics
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A recent report on genomic sequences:

The Anopheles gambiae 1000 Genomes Consortium: Genetic diversity of the African
malaria vector Anopheles gambiae. Nature, 552(7683):96–100, Dec 2017.

They identified 52,525,957 high-quality SNPs, of which 21% had three or more
alleles, an average of one variant allele every 2.2 bases of the accessible genome

These types of data are usually
NOT analyzed with finite mutation models

An example
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Table 1: Frequency and number of variable sites are used in the analysis (this example is only for the
simulations of two populations with a total of 20 individuals with a divergence time of 1.0 coalescent units
and different population sizes from overall Θ=0.002 to Θ=0.2 (Θ=4Neµ, mutation rate µ is per site).
The table shows the total number of variable sites over 100,000 bp.

Population Size Freq. Variable Sites SNPs Tri-Allelic Tetra-Allelic

0.002 0.00888 888 0 0
0.005 0.02124 2124 4 0

⋆ 0.010 0.03915 3915 36 0
0.020 0.07900 7900 124 1
0.050 0.19273 19273 847 15

⋆ 0.100 0.36277 36277 3477 116
0.150 0.46862 46862 5872 291
0.200 0.60330 60330 10596 797

Diversity measures and the coalescent
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Leffler et al. (2012) Revisiting an Old Riddle: What Determines Genetic Diversity Levels within Species?

Genetic Diversity within species
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If your species or species group has very small population sizes or had small
population sizes for a long time in the past, it may be just fine to discard the rare
tri-allelic sites.

If you do not know the effective population sizes or your species have large
differences in their population size, I suggest not trusting the site frequency-based
methods and comparing their results with alternatives.

We have so much data, does it matter?
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Wakeley et al. 2023: Modeling rare alleles using recurrent mutations from a common
allele

Jenkins et al. 2014: Allowing for 0, 1, or 2 mutations that are distinguishable (non-
nested)

Hobolth and Wiuf 2009: extension to nested mutations.

Their work is progress, but need to be expanded beyond single populations. We may
need an SFS allowing for calculations based on identity by state instead of numbered
mutations. Or improve speed on finite-mutation models.

Extension to the SFS
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We need to develop methods that work for all levels of diversity, I
am worried, in particular, about results using any species with large
population sizes (pathogens?)

Outlook

84 /85 ©2024 Peter Beerli



Outlook
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We will have a lab later this week where you will learn about Bayesian model
selection with MIGRATE using a lab where we differentiate between 8 simple
population models that include ”speciation” (or population splitting) with and
without migration using a data set of complete genomes of Zika viruses.


