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What is a model?
Math Biology 

(something observed)

Equations and plot: https://en.wikipedia.org/wiki/Lotka–Volterra_equations Lynx photo: Wikipedia (NPS Photo/Jacob W. Frank) Snowshoe Hare photo: Wikipedia (D. Gordon E. Robertson)
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What is a model?

Equations and plot: https://en.wikipedia.org/wiki/Lotka–Volterra_equations Lynx photo: Wikipedia (NPS Photo/Jacob W. Frank) Snowshoe Hare photo: Wikipedia (D. Gordon E. Robertson)

Mathematical models try to explain important features 
of (biological) systems using (relatively simple) 

mathematical principles.
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Deterministic and Stochastic Models
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Deterministic and Stochastic Models

NO randomness 
(no stochasticity) 

(no probability statements)
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Deterministic and Stochastic Models

NO randomness 
(no stochasticity) 

(no probability statements)

Randomness! 
(stochasticity) 

(probability statements) 
(variation in possible outcomes)
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Stochastic Models

Randomness! 
(stochasticity) 

(probability statements) 
(variation in possible outcomes)

A C

TG

Probability 
Statements

{Variable 
Outcomes
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A simple stochastic model

Heads Tails

Pr
ob

ab
ilit

y

1.0

0.0

0.5 p = 0.5

Bernoulli 
Describes the outcome of a single coin flip 

(or other binary 0/1 trial)
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A simple stochastic model

Heads Tails

Pr
ob

ab
ilit

y

1.0

0.0

0.5 p = 0.5

Bernoulli 
One type of discrete distribution

Probability Mass 
Function (PMF)
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A simple stochastic model

P(Heads) = p 
P(Tails) = 1-p

Heads Tails

Pr
ob

ab
ilit

y

1.0

0.0

0.5 p = 0.5

parameter
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Let’s build this model!

Heads Tails

Pr
ob

ab
ilit

y

1.0

0.0

0.5 p = 0.5
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RevBayes

https://revbayes.github.io
Jeremy M. Brown



Let’s build this stochastic model!

Heads Tails

Pr
ob

ab
ilit

y

1.0

0.0

0.5 p = 0.5

z  ~  dnBernoulli(0.5) 
z
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Heads Tails

Pr
ob

ab
ilit

y

1.0

0.0

0.5 p = 0.5

z  ~  dnBernoulli(0.5) 
z

“distributed as”

Let’s build this stochastic model!

Random 
Variable

Jeremy M. Brown

Rev language 
intended to feel a 
lot like R, but you 

can’t create random 
variables in R.



Heads Tails

Pr
ob

ab
ilit

y

1.0

0.0

0.5 p = 0.5

When you create a random variable 
in RevBayes, it automatically 

initializes that variable by drawing a 
value from the corresponding 

probability distribution.



The Role of Models
(1) Can we explain the important features of the real world 
using relatively simple mathematical principles (prediction)? 

(2) Within this mathematical framework, can we learn about 
the processes that generated our data (inference)? 

The most useful models can answer ‘yes’ to both.

z  ~  dnBernoulli(0.5) 
z

(1) 

(2) X p=0.5 
No data

Jeremy M. Brown



Heads Tails

p = 0.75

Heads Tails

p = 0.5

Heads Tails

1.0

0.0

0.5

p = 0.25

Different parameter values imply different 
probabilities for outcomes 

(different PMFs)
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Heads Tails

p = 0.75

Heads Tails

p = 0.5

Heads Tails

1.0

0.0

0.5

p = 0.25

Different parameter values imply different 
probabilities for outcomes 

(different PMFs)

Let’s “compute” the 
probability of Heads 

for each of these 
values of p.

Jeremy M. Brown



p <- 0.5 
z  ~  dnBernoulli(p) 

z.clamp(1) 
z.probability()

Here is where we attach our 
data (i.e., Heads) to our model. 

This is known as “clamping”.

Computing Likelihoods

Here we compute:

P(Heads |p = 0.5)

L(p = 0.5; Heads)

Jeremy M. Brown



Heads Tails

p = 0.75

Heads Tails

p = 0.5

Heads Tails

1.0

0.0

0.5

p = 0.25
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Heads Tails

p = 0.75

Heads Tails

p = 0.5

Heads Tails

1.0

0.0

0.5

p = 0.25

Being able to attach data to the 
model allows us to compare the 

likelihoods for different values of p! 

Of course, we don’t want to manually  
do this for all possible values of p. 

But before we talk about how to infer 
p, let’s take a step back.

Jeremy M. Brown



Graphical models provide a means of 
depicting the dependencies among 
parameters in probabilistic models. 

The “graphical” part of the name graphical 
models has to do with their basis on graphs, 

and not anything to do with drawing. 

But it is convenient that graphical models 
can also be drawn, to clearly depict the 

structure of the model.

Graphical Models

Jeremy M. Brown



p=0.25

p=0.25

z

p=0.25

z

Building a Graphical Model

p is fixed at 0.25

z depends on p 
 z is a Bernoulli r.v.

We “observed” a 
value of 1 for z.

Jeremy M. Brown



p=0.5

z
{Bernoulli

p=0.25

z

p=0.75

z
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What are the possible building blocks 
for graphical models?

Jeremy M. Brown



RevBayes Syntax

for loops

vectors

functions  
and  

arguments

sqrt(16)

for (i in 1:5){  
    print(i)  
}

test <- v(5,9,12) 
test 

test[2]

test[1] <- 5 
test[2] <- 9 
test[3] <- 12 

test

https://revbayes.github.io/tutorials/intro/rev.html

for (i in 1:3){ 
    print(test[i]) 
}

abs(-11)

choose(6,3)
ls()

max([2.1,5.5,7.8])

https://revbayes.github.io/documentation/
Jeremy M. Brown



Graphical Model Syntax

Constant Node

Symbol

Type

Description
Constant nodes are like standard variables in a programming 

language. They are assigned fixed values.

Rev Example

x  <-  2.3

x

Jeremy M. Brown



Graphical Model Syntax

Deterministic Node

Symbol

Type

Description
Deterministic nodes depend on the values of other nodes, but in a deterministic 

(fixed) way. They have no probability distribution intrinsically associated with them.

Rev Example

y  :=  2 * x

y

Jeremy M. Brown



Graphical Model Syntax

Stochastic Node

Symbol

Type

Description
Stochastic nodes represent random variables and take on values according to 

some probability distribution. These distributions may have parameters defined in 
other nodes in the model graph. The type of distribution associated with a node is 

often not written explicitly when a model is drawn, but it must be specified.

Rev Example
z  ~  dnBernoulli(0.5)

z

Jeremy M. Brown



Graphical Model Syntax

Clamped Stochastic Node

Symbol

Type

Description
Data can be viewed as the observed outcome of a stochastic node. Clamping 

involves assigning a set of observations to an associated stochastic node. 
Clamping data allows the values of other parameters in the model to be inferred.

Rev Example
z  ~  dnBernoulli(0.5) 

z.clamp(1)

z

Jeremy M. Brown



Graphical Model Syntax

Conditional Dependency

Symbol

Type

Description
Arrows indicate conditional dependencies and are directional. The node (variable) 
that the arrow points to depends on the value of the node at the other end of the 

arrow. For instance, if p points to Z, then we say that Z is dependent on p.

Rev Example
p <- 0.5 

z  ~  dnBernoulli(p) 
s := z*3

0.5 z s
Jeremy M. Brown



Graphical Model Syntax

Plate

Symbol

Type

Description
Plates simply represent repetition and make it easier to depict graphical models 

with a repetitive structure. For instance, the example above shows N instances of 
the clamped variable, z, with each instance indexed by i. Plates can be used with 
any type of node, but are commonly used with clamped nodes representing data.

Rev Example
N <- 10 
for (i in 1:N){ 

z[i]  ~  dnBernoulli(0.5) 
z[i].clamp(1) 
}

i ∈ N

zi

Jeremy M. Brown



Super Simple Models

x

y

x <- 2 
y := x / 4

What’s the structure of this model? 
What would happen if x was set to 16? 

Try changing x without changing y, but then look at value of y.
Jeremy M. Brown



Super Simple Models

 m <- 10 
s <- 0.1 

z ~ dnNormal(m,s) 
z.clamp(10.01)

What’s the structure of this model? 
What can we infer about this model?

z

μ σ

{Normal

Jeremy M. Brown



Super Simple Models

 m <- 10 
s <- 0.1 

z ~ dnNormal(m,s) 
z.clamp(10.01)

z

μ σ

What’s the structure of this model? 
What can we infer about this model? 

Nothing to infer! Only nodes are constant or clamped.

{Normal

Jeremy M. Brown



Super Simple Models

 m <- 10 
s <- 0.1 

z ~ dnNormal(m,s) 
z.clamp(10.01)

What’s the probability of our “observed” value?

z

μ σ

{Normal

Jeremy M. Brown



Probability Density Function (PDF)

Jeremy M. Brown



Single Bernoulli Trial

0 1{Uniform 
Prior

p

x

What’s the structure of this model? 
What can we infer about this model? 
How much information will we have?

{Bernoulli

Jeremy M. Brown



Single Bernoulli Trial

0 1{Uniform 
Prior

p

x
{Bernoulli

p ~ dnUnif(0,1) 
x ~ dnBernoulli(p) 

x.clamp(0)

Jeremy M. Brown



Series of Bernoullis with Linked p

0 1{Uniform 
Prior

p

x3
{Bernoulli

x2x1 x4 x5

What can we infer about this model? 
How much information will we have (relative to a single Bernoulli)?

Jeremy M. Brown



Series of Bernoullis with Linked p

0 1{Uniform 
Prior

p

x3
{Bernoulli

x2x1 x4 x5

p ~ dnUnif(0,1) 
for (i in 1:5){x[i] ~ dnBernoulli(p)} 

x[1].clamp(0) 
x[2].clamp(1) 
x[3].clamp(1) 
x[4].clamp(0) 
x[5].clamp(1)Jeremy M. Brown



Single Binomial

0 1{Uniform 
Prior

p

k
{Binomial

n

How does this model relate to the Bernoulli models?

Jeremy M. Brown



Single Binomial

0 1{Uniform 
Prior

p

k
{Binomial

n

p ~ dnUnif(0,1) 
n <- 5 

k ~ dnBinomial(n,p) 
k.clamp(3)

Jeremy M. Brown



Setting up MCMC in RevBayes
0 1{Uniform 

Prior

p

k
{Binomial

n

First, create a model object. You can pass any 
of the nodes to the constructor as a “handle”.

myModel = model(n)

NOTE: We use the = assignment operator for “workspace” variables.
Jeremy M. Brown



Setting up MCMC in RevBayes
0 1{Uniform 

Prior

p

k
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First, create a model object. You can pass any 
of the nodes to the constructor as a “handle”.
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Setting up MCMC in RevBayes
0 1{Uniform 

Prior

p

k
{Binomial

n

Next, we need to define a proposal distribution 
(move) for any parameters we are trying to infer.

moves = VectorMoves() 
moves.append( mvSlide(p,delta=0.1,weight=1) )

Many different move types are available in RevBayes.

Slide 
Move

Jeremy M. Brown



Setting up MCMC in RevBayes
As our MCMC runs, we need to keep track of our progress 
and sampled parameter values. To do that we use monitors.

monitors = VectorMonitors() 
monitors.append( mnScreen(printgen=1000,p) ) 

monitors.append( mnModel(filename=“myMCMC.log", printgen=10) )

Jeremy M. Brown



Setting up MCMC in RevBayes

Next we create an MCMC object.

myMCMC = mcmc(myModel,moves,monitors)

Now, we start the MCMC!
myMCMC.run(20000)

Jeremy M. Brown

Wait - what does this 20,000 mean?



Tracer

Trace PlotMarginal Distribution

Jeremy M. Brown



Assessing Convergence

Jeremy M. Brown



Assessing Convergence

How many samples did we draw during our MCMC analyses?
Jeremy M. Brown



95% 
Highest 
Posterior 
Density 
(HPD) 

Intervals
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Phylogenetic 
Graphical Models

Jeremy M. Brown



All 
Possible 

Ways 
Genes 
Could 
Evolve

Model Space (conceptual)

Jeremy M. Brown



Model Space (conceptual)

All 
Possible 

Ways 
Genes 
Could 
Evolve

The 
Types of 
Evolution 
That Are 
Built Into 

Many 
Programs
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Our Hope

All 
Possible 

Ways 
Genes 
Could 
Evolve

The 
Types of 
Evolution 
That Are 
Built Into 

Many 
Programs
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Our Fears

All 
Possible 

Ways 
Genes 
Could 
Evolve

The 
Types of 
Evolution 
That Are 
Built Into 

Many 
Programs
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The Probable Truth

All 
Possible 

Ways 
Genes 
Could 
Evolve

The 
Types of 
Evolution 
That Are 
Built Into 

Many 
Programs
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The Probable Truth

All 
Possible 

Ways 
Genes 
Could 
Evolve

The 
Types of 
Evolution 
That Are 
Built Into 

Many 
Programs

Types of Evolution that You’d Like to Try!
Jeremy M. Brown



{Jukes-Cantor

Jukes-Cantor

{PhyloCTMC

{Compound 
Tree- and 

Branch-length 
Prior {Uniform Prior on  

Unrooted 
Topologies

seq

Q

N

bli τ

Ψ
i ∈ 2N − 3

α β

TL reli

αbl

Jeremy M. Brown



{Jukes-Cantor

Jukes-Cantor

{PhyloCTMC
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Topologies
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Jukes-Cantor
data = readDiscreteCharacterData(“myData.nex”) 
taxa <- data.taxa() 
n_taxa <- data.ntaxa() 
n_branches <- 2 * n_taxa - 3 

topology ~ dnUniformTopology(taxa) 

alpha <- 2 
beta <- 4 

TL ~ dnGamma(alpha,beta) 

alpha_bl <- 1.0 

rel_branch_lengths ~ dnDirichlet( rep(alpha_bl,n_branches) ) 

br_lens := rel_branch_lengths * TL 

Q <- fnJC(4) 

psi := treeAssembly(topology, br_lens) 

seq ~ dnPhyloCTMC(tree=psi,Q=Q,type=“DNA”) 

seq.clamp(data)

seq

Q

N

bli τ

Ψ
i ∈ 2N − 3

α β

TL reli

αbl
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Jukes-Cantor
(Compound Dirichlet tree- and branch-length prior)

Tree Length
Gamma(α, β)

seq

Q

N

bli τ

Ψ
i ∈ 2N − 3

α β

TL reli

αbl
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Jukes-Cantor
(Compound Dirichlet tree- and branch-length prior)

Tree Length
Gamma(α, β)

Dir(αbl)

0.215

0.194
rel2

rel1

Relative Branch Lengths

0.155
rel3

0.147
rel4

0.143
rel5

0.075
rel6

0.071
rel7

seq

Q

N

bli τ

Ψ
i ∈ 2N − 3

α β

TL reli

αbl
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Jukes-Cantor
(Compound Dirichlet tree- and branch-length prior)

Tree Length
Gamma(α, β)

Dir(αbl)

0.215

0.194
rel2

rel1

Relative Branch Lengths

0.155
rel3

0.147
rel4

0.143
rel5

0.075
rel6

0.071
rel7

Branch Lengths

seq

Q

N

bli τ

Ψ
i ∈ 2N − 3

α β

TL reli

αbl
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Jukes-Cantor
data = readDiscreteCharacterData(“myData.nex”) 
taxa <- data.taxa() 
n_taxa <- data.ntaxa() 
n_branches <- 2 * n_taxa - 3 

topology ~ dnUniformTopology(taxa) 

alpha <- 2 
beta <- 4 

TL ~ dnGamma(alpha,beta) 

alpha_bl <- 1.0 

rel_branch_lengths ~ dnDirichlet(rep(alpha_bl,n_branches)) 

br_lens := rel_branch_lengths * TL 

Q <- fnJC(4) 

psi := treeAssembly(topology, br_lens) 

seq ~ dnPhyloCTMC(tree=psi,Q=Q,type=“DNA”) 

seq.clamp(data)

seq

Q

N

bli τ

Ψ
i ∈ 2N − 3

α β

TL reli

αbl

Jeremy M. Brown



Jukes-Cantor
data = readDiscreteCharacterData(“myData.nex”) 
taxa <- data.taxa() 
n_taxa <- data.ntaxa() 
n_branches <- 2 * n_taxa - 3 

topology ~ dnUniformTopology(taxa) 

alpha <- 2 
beta <- 4 

TL ~ dnGamma(alpha,beta) 

alpha_bl <- 1.0 

rel_branch_lengths ~ dnDirichlet(rep(alpha_bl,n_branches)) 

br_lens := rel_branch_lengths * TL 

Q <- fnJC(4) 

psi := treeAssembly(topology, br_lens) 

seq ~ dnPhyloCTMC(tree=psi,Q=Q,type=“DNA”) 

seq.clamp(data)

seq

Q

N

bli τ

Ψ
i ∈ 2N − 3

α β

TL reli

αbl

Jeremy M. Brown



Jukes-Cantor
data = readDiscreteCharacterData(“myData.nex”) 
taxa <- data.taxa() 
n_taxa <- data.ntaxa() 
n_branches <- 2 * n_taxa - 3 

topology ~ dnUniformTopology(taxa) 

alpha <- 2 
beta <- 4 

TL ~ dnGamma(alpha,beta) 

alpha_bl <- 1.0 

rel_branch_lengths ~ dnDirichlet(rep(alpha_bl,n_branches)) 

br_lens := rel_branch_lengths * TL 

Q <- fnJC(4) 

psi := treeAssembly(topology, br_lens) 

seq ~ dnPhyloCTMC(tree=psi,Q=Q,type=“DNA”) 

seq.clamp(data)

seq

Q

N

bli τ

Ψ
i ∈ 2N − 3

α β

TL reli

αbl

Jeremy M. Brown



Jukes-Cantor
data = readDiscreteCharacterData(“myData.nex”) 
taxa <- data.taxa() 
n_taxa <- data.ntaxa() 
n_branches <- 2 * n_taxa - 3 

topology ~ dnUniformTopology(taxa) 

alpha <- 2 
beta <- 4 

TL ~ dnGamma(alpha,beta) 

alpha_bl <- 1.0 

rel_branch_lengths ~ dnDirichlet(rep(alpha_bl,n_branches)) 

br_lens := rel_branch_lengths * TL 

Q <- fnJC(4) 

psi := treeAssembly(topology, br_lens) 

seq ~ dnPhyloCTMC(tree=psi,Q=Q,type=“DNA”) 

seq.clamp(data)

seq

Q

N

bli τ

Ψ
i ∈ 2N − 3

α β

TL reli

αbl

Jeremy M. Brown



Jukes-Cantor
data = readDiscreteCharacterData(“myData.nex”) 
taxa <- data.taxa() 
n_taxa <- data.ntaxa() 
n_branches <- 2 * n_taxa - 3 

topology ~ dnUniformTopology(taxa) 

alpha <- 2 
beta <- 4 

TL ~ dnGamma(alpha,beta) 

alpha_bl <- 1.0 

rel_branch_lengths ~ dnDirichlet(rep(alpha_bl,n_branches)) 

br_lens := rel_branch_lengths * TL 

Q <- fnJC(4) 

psi := treeAssembly(topology, br_lens) 

seq ~ dnPhyloCTMC(tree=psi,Q=Q,type=“DNA”) 

seq.clamp(data)

seq

Q

N

bli τ

Ψ
i ∈ 2N − 3

α β

TL reli

αbl

Jeremy M. Brown



Jukes-Cantor
data = readDiscreteCharacterData(“myData.nex”) 
taxa <- data.taxa() 
n_taxa <- data.ntaxa() 
n_branches <- 2 * n_taxa - 3 

topology ~ dnUniformTopology(taxa) 

alpha <- 2 
beta <- 4 

TL ~ dnGamma(alpha,beta) 

alpha_bl <- 1.0 

rel_branch_lengths ~ dnDirichlet(rep(alpha_bl,n_branches)) 

br_lens := rel_branch_lengths * TL 

Q <- fnJC(4) 

psi := treeAssembly(topology, br_lens) 

seq ~ dnPhyloCTMC(tree=psi,Q=Q,type=“DNA”) 

seq.clamp(data)

seq

Q

N

bli τ

Ψ
i ∈ 2N − 3

α β

TL reli

αbl

Jeremy M. Brown



Jukes-Cantor

τ

TL reli
Inferring these parameters 

under Jukes-Cantor.

Jeremy M. Brown



seq

Q

HKY85

N

bli τ

Ψ
i ∈ 2N − 3

α β

TL reli

αbl

κ

μ σ

{Log-normal

How does HKY85 differ from JC?

π αpi{
Dirichlet
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HKY85
How does HKY85 differ from JC?

Jeremy M. Brown

τ
i ∈ 2N − 3

TL reli

κ

π



Q

HKY85

κ

μ σ

How does HKY85 differ from JC?

π αpi

mu <- 0 
sigma <- 1 
kappa ~ dnLognormal(mu,sigma) 

alpha_pi <- 1.0 
pi ~ dnDirichlet( rep(alpha_pi,4) ) 

Q := fnHKY(kappa,pi)

Transition-Transversion Rate Ratio

Jeremy M. Brown



Q

HKY85

κ

μ σ

How does HKY85 differ from JC?

π αpi

mu <- 0 
sigma <- 1 
kappa ~ dnLognormal(mu,sigma) 

alpha_pi <- 1.0 
pi ~ dnDirichlet( rep(alpha_pi,4) ) 

Q := fnHKY(kappa,pi)
Variable Base Frequencies

Jeremy M. Brown



Q

General Time Reversible (GTR)

er

αer

π αpi

alpha_er <- 1.0 
er ~ dnDirichlet( rep(alpha_er,6) ) 

alpha_pi <- 1.0 
pi ~ dnDirichlet( rep(alpha_pi,4) ) 

Q := fnGTR(er,pi)

Variable Exchangeabilities

Jeremy M. Brown



As we add more stochastic nodes, remember to assign moves to all of them! 

Vectors modeled with a Dirichlet should have a joint proposal mechanism, since 
they need to sum to 1. Here are a couple: 

mvBetaSimplex 
mvDirichletSimplex 

You’ll often want to run analyses on the same dataset with multiple models. Start 
by saving your simplest model into a text file (.rev). Then, copy and paste the 

code into a file for the next model and adjust as necessary. Keep going as you 
work your way to more complex models.

Things to Remember

Jeremy M. Brown



Topology Moves

Nearest-Neighbor 
Interchange 

(NNI)

The most minor  
topological move.

https://en.wikipedia.org/wiki/Tree_rearrangementJeremy M. Brown



Topology Moves

Subtree Prune and Regraft 
(SPR)

Intermediate topological move.

Often a good balance between 
exploring new tree space without 

disrupting things too much.

https://en.wikipedia.org/wiki/Tree_rearrangementJeremy M. Brown



Topology Moves

Tree Bisection and Reconnection 
(TBR)

Disruptive topological move.

https://en.wikipedia.org/wiki/Tree_rearrangementJeremy M. Brown



seq

Q

N

bli τ

Ψ
i ∈ 2N − 3

α β

TL reli

αbl

Jukes-Cantor + Γ
Modeling Rate Variation Across Sites 

Gamma Distribution

sr α
μα

σα

{LogNormal

{
Discretized Gamma
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seq

Jukes-Cantor + Γ
Modeling Rate Variation Across Sites 

Gamma Distribution

sr α
μα

σα

{LogNormal

{
Discretized Gamma

mu_a <- ln(5.0) 
sigma_a <- 0.587405 

alpha ~ dnLognormal( mu_a, sigma_a ) 

sr := fnDiscretizeGamma( alpha, alpha, 4, false ) 

seq ~ dnPhyloCTMC(tree=psi,Q=Q, 
             siteRates=sr,type=“DNA”) 
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seq ~ dnPhyloCTMC(tree=psi,Q=Q, 
             siteRates=sr,type=“DNA”) 

Jeremy M. Brown



seq

Jukes-Cantor + Γ
Modeling Rate Variation Across Sites 

Gamma Distribution

sr α
μα

σα

{LogNormal

{
Discretized Gamma

mu_a <- ln(5.0) 
sigma_a <- 0.587405 

alpha ~ dnLognormal( mu_a, sigma_a ) 

sr := fnDiscretizeGamma( alpha, alpha, 4, false ) 

seq ~ dnPhyloCTMC(tree=psi,Q=Q, 
             siteRates=sr,type=“DNA”) 
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Modeling Rate Variation Across Sites 

Gamma Distribution

sr α
μα

σα

{LogNormal

{
Discretized Gamma

mu_a <- ln(5.0) 
sigma_a <- 0.587405 

alpha ~ dnLognormal( mu_a, sigma_a ) 

sr := fnDiscretizeGamma( alpha, alpha, 4, false ) 

seq ~ dnPhyloCTMC(tree=psi,Q=Q, 
             siteRates=sr,type=“DNA”) 
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seq

Jukes-Cantor + Γ
Modeling Rate Variation Across Sites 

Gamma Distribution

sr α
μα

σα

{LogNormal

{
Discretized Gamma

mu_a <- ln(5.0) 
sigma_a <- 0.587405 

alpha ~ dnLognormal( mu_a, sigma_a ) 

sr := fnDiscretizeGamma( alpha, alpha, 4, false ) 

seq ~ dnPhyloCTMC(tree=psi,Q=Q, 
             siteRates=sr,type=“DNA”) 

Can add +    to any 
“standard” model of 
sequence evolution.

Γ

Jeremy M. Brown



Modeling Rate Variation Across Sites 
Proportion of Invariable Sites
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Relative Rate of EvolutionJeremy M. Brown
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Modeling Rate Variation Across Sites 
Proportion of Invariable Sites
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{Mixture Distribution
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Jukes-Cantor + I
Modeling Rate Variation Across Sites 

Proportion of Invariable Sites

pinv

αp

βp

{Beta

{Mixture Distribution

alpha_p <- 1.0 
beta_p <- 1.0 

p_inv ~ dnBeta( alpha_p, beta_p ) 

seq ~ dnPhyloCTMC(tree=psi, Q=Q, 
             pInv=p_inv, type=“DNA”) 
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             pInv=p_inv, type=“DNA”) 
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{Mixture Distribution

alpha_p <- 1.0 
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p_inv ~ dnBeta( alpha_p, beta_p ) 

seq ~ dnPhyloCTMC(tree=psi, Q=Q, 
             pInv=p_inv, type=“DNA”) 
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seq

Jukes-Cantor + I
Modeling Rate Variation Across Sites 

Proportion of Invariable Sites

pinv

αp

βp

{Beta

{Mixture Distribution

alpha_p <- 1.0 
beta_p <- 1.0 

p_inv ~ dnBeta( alpha_p, beta_p ) 

seq ~ dnPhyloCTMC(tree=psi, Q=Q, 
             pInv=p_inv, type=“DNA”) 

Can also add + I to 
any “standard” model 

of sequence evolution.
Jeremy M. Brown



Summarizing Phylogenetic MCMC Output
For scalar (numerical) parameters, we often report: 

Mean 

Median 

95% Highest Posterior Density Interval

Jeremy M. Brown



Summarizing Phylogenetic MCMC Output
For trees, we often report: 

Maximum A Posteriori (MAP) Tree 
(“Best” Tree) 

Majority-Rule Consensus Tree 
(Formed from all bipartitions with posterior > 0.5) 

Greedy Consensus Tree 
(Formed by ranking bipartitions and adding them until tree is fully resolved) 

Maximum Clade Credibility Tree 
(Sampled tree whose product of bipartition probabilities is greatest) 

95% Credible Set 
(Set of most probable trees whose total probability is >= 95%)

mapTree(run1Trees)
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Summarizing Phylogenetic MCMC Output
For trees, we often report: 

Maximum A Posteriori (MAP) Tree 
(“Best” Tree) 

Majority-Rule Consensus Tree 
(Formed from all bipartitions with posterior > 0.5) 

Greedy Consensus Tree 
(Formed by ranking bipartitions and adding them until tree is fully resolved) 

Maximum Clade Credibility Tree 
(Sampled tree whose product of bipartition probabilities is greatest) 

95% Credible Set 
(Set of most probable trees whose total probability is >= 95%)

consensusTree(run1Trees,0.5)
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Summarizing Phylogenetic MCMC Output
For trees, we often report: 

Maximum A Posteriori (MAP) Tree 
(“Best” Tree) 

Majority-Rule Consensus Tree 
(Formed from all bipartitions with posterior > 0.5) 

Greedy Consensus Tree 
(Formed by ranking bipartitions and adding them until tree is fully resolved) 

Maximum Clade Credibility Tree 
(Sampled tree whose product of bipartition probabilities is greatest) 

95% Credible Set 
(Set of most probable trees whose total probability is >= 95%)

consensusTree(run1Trees,0.0)
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Summarizing Phylogenetic MCMC Output
For trees, we often report: 

Maximum A Posteriori (MAP) Tree 
(“Best” Tree) 

Majority-Rule Consensus Tree 
(Formed from all bipartitions with posterior > 0.5) 

Greedy Consensus Tree 
(Formed by ranking bipartitions and adding them until tree is fully resolved) 

Maximum Clade Credibility Tree 
(Sampled tree whose product of bipartition probabilities is greatest) 

95% Credible Set 
(Set of most probable trees whose total probability is >= 95%)

mccTree(run1Trees)

Jeremy M. Brown



Assessing Topological Convergence



Assessing Topological Convergence

run1Trees = readTrees(“run1.trees”) 
run2Trees = readTrees(“run2.trees”) 

maxdiff([run1Trees,run2Trees])

Finds the biggest difference in 
estimated marginal posterior 

probabilities for all bipartitions 
across different replicates.

Visualizations of 
Tree Space

Jeremy M. Brown
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RevBayes Tutorial Setup

cd ~ 

cp -r moledata/revbayes/ ./ 

cd revbayes/genetree/ 

mv ./scripts/*.Rev .

After logging on to your VM…

Jeremy M. Brown



https://revbayes.github.io/tutorials/ctmc/

RevBayes CTMC Tutorial

I strongly encourage you to try building at least one Rev script 
yourself for this tutorial, rather than simply running those that are 

already available. 

Also note that in the scripts that are already written, the default 
number of replicate runs is 4. This is great for assessing 

convergence, but will cause analyses to run fairly slowly. You can 
reduce this to 2 to make sure that runs finish in a reasonable 

amount of time. 

You’ll also want to change the printgen option of mnModel and 
mnFile to 10 (rather than 1). Otherwise, output files get huge!

Jeremy M. Brown



https://revbayes.github.io/tutorials/ctmc/

RevBayes CTMC Tutorial

Look at Table 1 in the tutorial above. 

Using the model descriptions in the table, use the same 
principles we’ve been practicing to set up each of these 

models in RevBayes. 

Fill out Table 2 for as many models as you can.

rb mcmc_JC.Rev

Jeremy M. Brown



End
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