
Intro. to Graphical Models
and

RevBayes

Jeremy M. Brown
Louisiana State University

What is a model?
Math Biology

(something observed)

Equations and plot: https://en.wikipedia.org/wiki/Lotka–Volterra_equations Lynx photo: Wikipedia (NPS Photo/Jacob W. Frank) Snowshoe Hare photo: Wikipedia (D. Gordon E. Robertson)

Jeremy M. Brown

What is a model?

Equations and plot: https://en.wikipedia.org/wiki/Lotka–Volterra_equations Lynx photo: Wikipedia (NPS Photo/Jacob W. Frank) Snowshoe Hare photo: Wikipedia (D. Gordon E. Robertson)

Mathematical models try to explain important features
of (biological) systems using (relatively simple)

mathematical principles.

Jeremy M. Brown

Deterministic and Stochastic Models

Jeremy M. Brown

Deterministic and Stochastic Models

NO randomness
(no stochasticity)

(no probability statements)

Jeremy M. Brown

Deterministic and Stochastic Models

NO randomness
(no stochasticity)

(no probability statements)

Randomness!
(stochasticity)

(probability statements)
(variation in possible outcomes)

A C

TG

Jeremy M. Brown

Stochastic Models

Randomness!
(stochasticity)

(probability statements)
(variation in possible outcomes)

A C

TG

Probability
Statements

{Variable
Outcomes

Jeremy M. Brown

A simple stochastic model

Heads Tails

Pr
ob

ab
ilit

y

1.0

0.0

0.5 p = 0.5

Bernoulli
Describes the outcome of a single coin flip

(or other binary 0/1 trial)
Jeremy M. Brown

A simple stochastic model

Heads Tails

Pr
ob

ab
ilit

y

1.0

0.0

0.5 p = 0.5

Bernoulli
One type of discrete distribution

Probability Mass
Function (PMF)

Jeremy M. Brown

A simple stochastic model

P(Heads) = p
P(Tails) = 1-p

Heads Tails

Pr
ob

ab
ilit

y

1.0

0.0

0.5 p = 0.5

parameter

Jeremy M. Brown

Let’s build this model!

Heads Tails

Pr
ob

ab
ilit

y

1.0

0.0

0.5 p = 0.5

Jeremy M. Brown

RevBayes

https://revbayes.github.io
Jeremy M. Brown

Let’s build this stochastic model!

Heads Tails

Pr
ob

ab
ilit

y

1.0

0.0

0.5 p = 0.5

z ~ dnBernoulli(0.5)
z

Jeremy M. Brown

Heads Tails

Pr
ob

ab
ilit

y

1.0

0.0

0.5 p = 0.5

z ~ dnBernoulli(0.5)
z

“distributed as”

Let’s build this stochastic model!

Random
Variable

Jeremy M. Brown

Rev language
intended to feel a
lot like R, but you

can’t create random
variables in R.

Heads Tails

Pr
ob

ab
ilit

y

1.0

0.0

0.5 p = 0.5

When you create a random variable
in RevBayes, it automatically

initializes that variable by drawing a
value from the corresponding

probability distribution.

The Role of Models
(1) Can we explain the important features of the real world
using relatively simple mathematical principles (prediction)?

(2) Within this mathematical framework, can we learn about
the processes that generated our data (inference)?

The most useful models can answer ‘yes’ to both.

z ~ dnBernoulli(0.5)
z

(1)

(2) X p=0.5
No data

Jeremy M. Brown

Heads Tails

p = 0.75

Heads Tails

p = 0.5

Heads Tails

1.0

0.0

0.5

p = 0.25

Different parameter values imply different
probabilities for outcomes

(different PMFs)

Jeremy M. Brown

Heads Tails

p = 0.75

Heads Tails

p = 0.5

Heads Tails

1.0

0.0

0.5

p = 0.25

Different parameter values imply different
probabilities for outcomes

(different PMFs)

Let’s “compute” the
probability of Heads

for each of these
values of p.

Jeremy M. Brown

p <- 0.5
z ~ dnBernoulli(p)

z.clamp(1)
z.probability()

Here is where we attach our
data (i.e., Heads) to our model.

This is known as “clamping”.

Computing Likelihoods

Here we compute:

P(Heads |p = 0.5)

L(p = 0.5; Heads)

Jeremy M. Brown

Heads Tails

p = 0.75

Heads Tails

p = 0.5

Heads Tails

1.0

0.0

0.5

p = 0.25

Jeremy M. Brown

Heads Tails

p = 0.75

Heads Tails

p = 0.5

Heads Tails

1.0

0.0

0.5

p = 0.25

Being able to attach data to the
model allows us to compare the

likelihoods for different values of p!

Of course, we don’t want to manually
do this for all possible values of p.

But before we talk about how to infer
p, let’s take a step back.

Jeremy M. Brown

Graphical models provide a means of
depicting the dependencies among
parameters in probabilistic models.

The “graphical” part of the name graphical
models has to do with their basis on graphs,

and not anything to do with drawing.

But it is convenient that graphical models
can also be drawn, to clearly depict the

structure of the model.

Graphical Models

Jeremy M. Brown

p=0.25

p=0.25

z

p=0.25

z

Building a Graphical Model

p is fixed at 0.25

z depends on p
 z is a Bernoulli r.v.

We “observed” a
value of 1 for z.

Jeremy M. Brown

p=0.5

z
{Bernoulli

p=0.25

z

p=0.75

z

Jeremy M. Brown

What are the possible building blocks
for graphical models?

Jeremy M. Brown

RevBayes Syntax

for loops

vectors

functions
and

arguments

sqrt(16)

for (i in 1:5){
 print(i)
}

test <- v(5,9,12)
test

test[2]

test[1] <- 5
test[2] <- 9
test[3] <- 12

test

https://revbayes.github.io/tutorials/intro/rev.html

for (i in 1:3){
 print(test[i])
}

abs(-11)

choose(6,3)
ls()

max([2.1,5.5,7.8])

https://revbayes.github.io/documentation/
Jeremy M. Brown

Graphical Model Syntax

Constant Node

Symbol

Type

Description
Constant nodes are like standard variables in a programming

language. They are assigned fixed values.

Rev Example

x <- 2.3

x

Jeremy M. Brown

Graphical Model Syntax

Deterministic Node

Symbol

Type

Description
Deterministic nodes depend on the values of other nodes, but in a deterministic

(fixed) way. They have no probability distribution intrinsically associated with them.

Rev Example

y := 2 * x

y

Jeremy M. Brown

Graphical Model Syntax

Stochastic Node

Symbol

Type

Description
Stochastic nodes represent random variables and take on values according to

some probability distribution. These distributions may have parameters defined in
other nodes in the model graph. The type of distribution associated with a node is

often not written explicitly when a model is drawn, but it must be specified.

Rev Example
z ~ dnBernoulli(0.5)

z

Jeremy M. Brown

Graphical Model Syntax

Clamped Stochastic Node

Symbol

Type

Description
Data can be viewed as the observed outcome of a stochastic node. Clamping

involves assigning a set of observations to an associated stochastic node.
Clamping data allows the values of other parameters in the model to be inferred.

Rev Example
z ~ dnBernoulli(0.5)

z.clamp(1)

z

Jeremy M. Brown

Graphical Model Syntax

Conditional Dependency

Symbol

Type

Description
Arrows indicate conditional dependencies and are directional. The node (variable)
that the arrow points to depends on the value of the node at the other end of the

arrow. For instance, if p points to Z, then we say that Z is dependent on p.

Rev Example
p <- 0.5

z ~ dnBernoulli(p)
s := z*3

0.5 z s
Jeremy M. Brown

Graphical Model Syntax

Plate

Symbol

Type

Description
Plates simply represent repetition and make it easier to depict graphical models

with a repetitive structure. For instance, the example above shows N instances of
the clamped variable, z, with each instance indexed by i. Plates can be used with
any type of node, but are commonly used with clamped nodes representing data.

Rev Example
N <- 10
for (i in 1:N){

z[i] ~ dnBernoulli(0.5)
z[i].clamp(1)
}

i ∈ N

zi

Jeremy M. Brown

Super Simple Models

x

y

x <- 2
y := x / 4

What’s the structure of this model?
What would happen if x was set to 16?

Try changing x without changing y, but then look at value of y.
Jeremy M. Brown

Super Simple Models

 m <- 10
s <- 0.1

z ~ dnNormal(m,s)
z.clamp(10.01)

What’s the structure of this model? 
What can we infer about this model?

z

μ σ

{Normal

Jeremy M. Brown

Super Simple Models

 m <- 10
s <- 0.1

z ~ dnNormal(m,s)
z.clamp(10.01)

z

μ σ

What’s the structure of this model? 
What can we infer about this model?

Nothing to infer! Only nodes are constant or clamped.

{Normal

Jeremy M. Brown

Super Simple Models

 m <- 10
s <- 0.1

z ~ dnNormal(m,s)
z.clamp(10.01)

What’s the probability of our “observed” value?

z

μ σ

{Normal

Jeremy M. Brown

Probability Density Function (PDF)

Jeremy M. Brown

Single Bernoulli Trial

0 1{Uniform
Prior

p

x

What’s the structure of this model? 
What can we infer about this model?
How much information will we have?

{Bernoulli

Jeremy M. Brown

Single Bernoulli Trial

0 1{Uniform
Prior

p

x
{Bernoulli

p ~ dnUnif(0,1)
x ~ dnBernoulli(p)

x.clamp(0)

Jeremy M. Brown

Series of Bernoullis with Linked p

0 1{Uniform
Prior

p

x3
{Bernoulli

x2x1 x4 x5

What can we infer about this model?
How much information will we have (relative to a single Bernoulli)?

Jeremy M. Brown

Series of Bernoullis with Linked p

0 1{Uniform
Prior

p

x3
{Bernoulli

x2x1 x4 x5

p ~ dnUnif(0,1)
for (i in 1:5){x[i] ~ dnBernoulli(p)}

x[1].clamp(0)
x[2].clamp(1)
x[3].clamp(1)
x[4].clamp(0)
x[5].clamp(1)Jeremy M. Brown

Single Binomial

0 1{Uniform
Prior

p

k
{Binomial

n

How does this model relate to the Bernoulli models?

Jeremy M. Brown

Single Binomial

0 1{Uniform
Prior

p

k
{Binomial

n

p ~ dnUnif(0,1)
n <- 5

k ~ dnBinomial(n,p)
k.clamp(3)

Jeremy M. Brown

Setting up MCMC in RevBayes
0 1{Uniform

Prior

p

k
{Binomial

n

First, create a model object. You can pass any
of the nodes to the constructor as a “handle”.

myModel = model(n)

NOTE: We use the = assignment operator for “workspace” variables.
Jeremy M. Brown

Setting up MCMC in RevBayes
0 1{Uniform

Prior

p

k
{Binomial

n

First, create a model object. You can pass any
of the nodes to the constructor as a “handle”.

myModel = model(n)

NOTE: We use the = assignment operator for “workspace” variables.
Jeremy M. Brown

Setting up MCMC in RevBayes
0 1{Uniform

Prior

p

k
{Binomial

n

Next, we need to define a proposal distribution
(move) for any parameters we are trying to infer.

moves = VectorMoves()
moves.append(mvSlide(p,delta=0.1,weight=1))

Many different move types are available in RevBayes.

Slide
Move

Jeremy M. Brown

Setting up MCMC in RevBayes
As our MCMC runs, we need to keep track of our progress
and sampled parameter values. To do that we use monitors.

monitors = VectorMonitors()
monitors.append(mnScreen(printgen=1000,p))

monitors.append(mnModel(filename=“myMCMC.log", printgen=10))

Jeremy M. Brown

Setting up MCMC in RevBayes

Next we create an MCMC object.

myMCMC = mcmc(myModel,moves,monitors)

Now, we start the MCMC!
myMCMC.run(20000)

Jeremy M. Brown

Wait - what does this 20,000 mean?

Tracer

Trace PlotMarginal Distribution

Jeremy M. Brown

Assessing Convergence

Jeremy M. Brown

Assessing Convergence

How many samples did we draw during our MCMC analyses?
Jeremy M. Brown

95%
Highest
Posterior
Density
(HPD)

Intervals

Jeremy M. Brown

Phylogenetic
Graphical Models

Jeremy M. Brown

All
Possible

Ways
Genes
Could
Evolve

Model Space (conceptual)

Jeremy M. Brown

Model Space (conceptual)

All
Possible

Ways
Genes
Could
Evolve

The
Types of
Evolution
That Are
Built Into

Many
Programs

Jeremy M. Brown

Our Hope

All
Possible

Ways
Genes
Could
Evolve

The
Types of
Evolution
That Are
Built Into

Many
Programs

Jeremy M. Brown

Our Fears

All
Possible

Ways
Genes
Could
Evolve

The
Types of
Evolution
That Are
Built Into

Many
Programs

Jeremy M. Brown

The Probable Truth

All
Possible

Ways
Genes
Could
Evolve

The
Types of
Evolution
That Are
Built Into

Many
Programs

Jeremy M. Brown

The Probable Truth

All
Possible

Ways
Genes
Could
Evolve

The
Types of
Evolution
That Are
Built Into

Many
Programs

Types of Evolution that You’d Like to Try!
Jeremy M. Brown

{Jukes-Cantor

Jukes-Cantor

{PhyloCTMC

{Compound
Tree- and

Branch-length
Prior {Uniform Prior on

Unrooted
Topologies

seq

Q

N

bli τ

Ψ
i ∈ 2N − 3

α β

TL reli

αbl

Jeremy M. Brown

{Jukes-Cantor

Jukes-Cantor

{PhyloCTMC

{Compound
Tree- and

Branch-length
Prior {Uniform Prior on

Unrooted
Topologies

seq

Q

N

bli τ

Ψ
i ∈ 2N − 3

α β

TL reli

αbl

Jeremy M. Brown

Jukes-Cantor
data = readDiscreteCharacterData(“myData.nex”)
taxa <- data.taxa()
n_taxa <- data.ntaxa()
n_branches <- 2 * n_taxa - 3

topology ~ dnUniformTopology(taxa)

alpha <- 2
beta <- 4

TL ~ dnGamma(alpha,beta)

alpha_bl <- 1.0

rel_branch_lengths ~ dnDirichlet(rep(alpha_bl,n_branches))

br_lens := rel_branch_lengths * TL

Q <- fnJC(4)

psi := treeAssembly(topology, br_lens)

seq ~ dnPhyloCTMC(tree=psi,Q=Q,type=“DNA”)

seq.clamp(data)

seq

Q

N

bli τ

Ψ
i ∈ 2N − 3

α β

TL reli

αbl

Jeremy M. Brown

Jukes-Cantor
data = readDiscreteCharacterData(“myData.nex”)
taxa <- data.taxa()
n_taxa <- data.ntaxa()
n_branches <- 2 * n_taxa - 3

topology ~ dnUniformTopology(taxa)

alpha <- 2
beta <- 4

TL ~ dnGamma(alpha,beta)

alpha_bl <- 1.0

rel_branch_lengths ~ dnDirichlet(rep(alpha_bl,n_branches))

br_lens := rel_branch_lengths * TL

Q <- fnJC(4)

psi := treeAssembly(topology, br_lens)

seq ~ dnPhyloCTMC(tree=psi,Q=Q,type=“DNA”)

seq.clamp(data)

seq

Q

N

bli τ

Ψ
i ∈ 2N − 3

α β

TL reli

αbl

Jeremy M. Brown

Jukes-Cantor
(Compound Dirichlet tree- and branch-length prior)

Tree Length
Gamma(α, β)

seq

Q

N

bli τ

Ψ
i ∈ 2N − 3

α β

TL reli

αbl

Jeremy M. Brown

Jukes-Cantor
(Compound Dirichlet tree- and branch-length prior)

Tree Length
Gamma(α, β)

Dir(αbl)

0.215

0.194
rel2

rel1

Relative Branch Lengths

0.155
rel3

0.147
rel4

0.143
rel5

0.075
rel6

0.071
rel7

seq

Q

N

bli τ

Ψ
i ∈ 2N − 3

α β

TL reli

αbl

Jeremy M. Brown

Jukes-Cantor
(Compound Dirichlet tree- and branch-length prior)

Tree Length
Gamma(α, β)

Dir(αbl)

0.215

0.194
rel2

rel1

Relative Branch Lengths

0.155
rel3

0.147
rel4

0.143
rel5

0.075
rel6

0.071
rel7

Branch Lengths

seq

Q

N

bli τ

Ψ
i ∈ 2N − 3

α β

TL reli

αbl

Jeremy M. Brown

Jukes-Cantor
data = readDiscreteCharacterData(“myData.nex”)
taxa <- data.taxa()
n_taxa <- data.ntaxa()
n_branches <- 2 * n_taxa - 3

topology ~ dnUniformTopology(taxa)

alpha <- 2
beta <- 4

TL ~ dnGamma(alpha,beta)

alpha_bl <- 1.0

rel_branch_lengths ~ dnDirichlet(rep(alpha_bl,n_branches))

br_lens := rel_branch_lengths * TL

Q <- fnJC(4)

psi := treeAssembly(topology, br_lens)

seq ~ dnPhyloCTMC(tree=psi,Q=Q,type=“DNA”)

seq.clamp(data)

seq

Q

N

bli τ

Ψ
i ∈ 2N − 3

α β

TL reli

αbl

Jeremy M. Brown

Jukes-Cantor
data = readDiscreteCharacterData(“myData.nex”)
taxa <- data.taxa()
n_taxa <- data.ntaxa()
n_branches <- 2 * n_taxa - 3

topology ~ dnUniformTopology(taxa)

alpha <- 2
beta <- 4

TL ~ dnGamma(alpha,beta)

alpha_bl <- 1.0

rel_branch_lengths ~ dnDirichlet(rep(alpha_bl,n_branches))

br_lens := rel_branch_lengths * TL

Q <- fnJC(4)

psi := treeAssembly(topology, br_lens)

seq ~ dnPhyloCTMC(tree=psi,Q=Q,type=“DNA”)

seq.clamp(data)

seq

Q

N

bli τ

Ψ
i ∈ 2N − 3

α β

TL reli

αbl

Jeremy M. Brown

Jukes-Cantor
data = readDiscreteCharacterData(“myData.nex”)
taxa <- data.taxa()
n_taxa <- data.ntaxa()
n_branches <- 2 * n_taxa - 3

topology ~ dnUniformTopology(taxa)

alpha <- 2
beta <- 4

TL ~ dnGamma(alpha,beta)

alpha_bl <- 1.0

rel_branch_lengths ~ dnDirichlet(rep(alpha_bl,n_branches))

br_lens := rel_branch_lengths * TL

Q <- fnJC(4)

psi := treeAssembly(topology, br_lens)

seq ~ dnPhyloCTMC(tree=psi,Q=Q,type=“DNA”)

seq.clamp(data)

seq

Q

N

bli τ

Ψ
i ∈ 2N − 3

α β

TL reli

αbl

Jeremy M. Brown

Jukes-Cantor
data = readDiscreteCharacterData(“myData.nex”)
taxa <- data.taxa()
n_taxa <- data.ntaxa()
n_branches <- 2 * n_taxa - 3

topology ~ dnUniformTopology(taxa)

alpha <- 2
beta <- 4

TL ~ dnGamma(alpha,beta)

alpha_bl <- 1.0

rel_branch_lengths ~ dnDirichlet(rep(alpha_bl,n_branches))

br_lens := rel_branch_lengths * TL

Q <- fnJC(4)

psi := treeAssembly(topology, br_lens)

seq ~ dnPhyloCTMC(tree=psi,Q=Q,type=“DNA”)

seq.clamp(data)

seq

Q

N

bli τ

Ψ
i ∈ 2N − 3

α β

TL reli

αbl

Jeremy M. Brown

Jukes-Cantor
data = readDiscreteCharacterData(“myData.nex”)
taxa <- data.taxa()
n_taxa <- data.ntaxa()
n_branches <- 2 * n_taxa - 3

topology ~ dnUniformTopology(taxa)

alpha <- 2
beta <- 4

TL ~ dnGamma(alpha,beta)

alpha_bl <- 1.0

rel_branch_lengths ~ dnDirichlet(rep(alpha_bl,n_branches))

br_lens := rel_branch_lengths * TL

Q <- fnJC(4)

psi := treeAssembly(topology, br_lens)

seq ~ dnPhyloCTMC(tree=psi,Q=Q,type=“DNA”)

seq.clamp(data)

seq

Q

N

bli τ

Ψ
i ∈ 2N − 3

α β

TL reli

αbl

Jeremy M. Brown

Jukes-Cantor
data = readDiscreteCharacterData(“myData.nex”)
taxa <- data.taxa()
n_taxa <- data.ntaxa()
n_branches <- 2 * n_taxa - 3

topology ~ dnUniformTopology(taxa)

alpha <- 2
beta <- 4

TL ~ dnGamma(alpha,beta)

alpha_bl <- 1.0

rel_branch_lengths ~ dnDirichlet(rep(alpha_bl,n_branches))

br_lens := rel_branch_lengths * TL

Q <- fnJC(4)

psi := treeAssembly(topology, br_lens)

seq ~ dnPhyloCTMC(tree=psi,Q=Q,type=“DNA”)

seq.clamp(data)

seq

Q

N

bli τ

Ψ
i ∈ 2N − 3

α β

TL reli

αbl

Jeremy M. Brown

Jukes-Cantor

τ

TL reli
Inferring these parameters

under Jukes-Cantor.

Jeremy M. Brown

seq

Q

HKY85

N

bli τ

Ψ
i ∈ 2N − 3

α β

TL reli

αbl

κ

μ σ

{Log-normal

How does HKY85 differ from JC?

π αpi{
Dirichlet

Jeremy M. Brown

HKY85
How does HKY85 differ from JC?

Jeremy M. Brown

τ
i ∈ 2N − 3

TL reli

κ

π

Q

HKY85

κ

μ σ

How does HKY85 differ from JC?

π αpi

mu <- 0
sigma <- 1
kappa ~ dnLognormal(mu,sigma)

alpha_pi <- 1.0
pi ~ dnDirichlet(rep(alpha_pi,4))

Q := fnHKY(kappa,pi)

Transition-Transversion Rate Ratio

Jeremy M. Brown

Q

HKY85

κ

μ σ

How does HKY85 differ from JC?

π αpi

mu <- 0
sigma <- 1
kappa ~ dnLognormal(mu,sigma)

alpha_pi <- 1.0
pi ~ dnDirichlet(rep(alpha_pi,4))

Q := fnHKY(kappa,pi)
Variable Base Frequencies

Jeremy M. Brown

Q

General Time Reversible (GTR)

er

αer

π αpi

alpha_er <- 1.0
er ~ dnDirichlet(rep(alpha_er,6))

alpha_pi <- 1.0
pi ~ dnDirichlet(rep(alpha_pi,4))

Q := fnGTR(er,pi)

Variable Exchangeabilities

Jeremy M. Brown

As we add more stochastic nodes, remember to assign moves to all of them!

Vectors modeled with a Dirichlet should have a joint proposal mechanism, since
they need to sum to 1. Here are a couple:

mvBetaSimplex
mvDirichletSimplex

You’ll often want to run analyses on the same dataset with multiple models. Start
by saving your simplest model into a text file (.rev). Then, copy and paste the

code into a file for the next model and adjust as necessary. Keep going as you
work your way to more complex models.

Things to Remember

Jeremy M. Brown

Topology Moves

Nearest-Neighbor
Interchange

(NNI)

The most minor
topological move.

https://en.wikipedia.org/wiki/Tree_rearrangementJeremy M. Brown

Topology Moves

Subtree Prune and Regraft
(SPR)

Intermediate topological move.

Often a good balance between
exploring new tree space without

disrupting things too much.

https://en.wikipedia.org/wiki/Tree_rearrangementJeremy M. Brown

Topology Moves

Tree Bisection and Reconnection
(TBR)

Disruptive topological move.

https://en.wikipedia.org/wiki/Tree_rearrangementJeremy M. Brown

seq

Q

N

bli τ

Ψ
i ∈ 2N − 3

α β

TL reli

αbl

Jukes-Cantor + Γ
Modeling Rate Variation Across Sites

Gamma Distribution

sr α
μα

σα

{LogNormal

{
Discretized Gamma

Jeremy M. Brown

seq

Jukes-Cantor + Γ
Modeling Rate Variation Across Sites

Gamma Distribution

sr α
μα

σα

{LogNormal

{
Discretized Gamma

mu_a <- ln(5.0)
sigma_a <- 0.587405

alpha ~ dnLognormal(mu_a, sigma_a)

sr := fnDiscretizeGamma(alpha, alpha, 4, false)

seq ~ dnPhyloCTMC(tree=psi,Q=Q,
 siteRates=sr,type=“DNA”)

Jeremy M. Brown

seq

Jukes-Cantor + Γ
Modeling Rate Variation Across Sites

Gamma Distribution

sr α
μα

σα

{LogNormal

{
Discretized Gamma

mu_a <- ln(5.0)
sigma_a <- 0.587405

alpha ~ dnLognormal(mu_a, sigma_a)

sr := fnDiscretizeGamma(alpha, alpha, 4, false)

seq ~ dnPhyloCTMC(tree=psi,Q=Q,
 siteRates=sr,type=“DNA”)

Jeremy M. Brown

seq

Jukes-Cantor + Γ
Modeling Rate Variation Across Sites

Gamma Distribution

sr α
μα

σα

{LogNormal

{
Discretized Gamma

mu_a <- ln(5.0)
sigma_a <- 0.587405

alpha ~ dnLognormal(mu_a, sigma_a)

sr := fnDiscretizeGamma(alpha, alpha, 4, false)

seq ~ dnPhyloCTMC(tree=psi,Q=Q,
 siteRates=sr,type=“DNA”)

Jeremy M. Brown

seq

Jukes-Cantor + Γ
Modeling Rate Variation Across Sites

Gamma Distribution

sr α
μα

σα

{LogNormal

{
Discretized Gamma

mu_a <- ln(5.0)
sigma_a <- 0.587405

alpha ~ dnLognormal(mu_a, sigma_a)

sr := fnDiscretizeGamma(alpha, alpha, 4, false)

seq ~ dnPhyloCTMC(tree=psi,Q=Q,
 siteRates=sr,type=“DNA”)

Jeremy M. Brown

seq

Jukes-Cantor + Γ
Modeling Rate Variation Across Sites

Gamma Distribution

sr α
μα

σα

{LogNormal

{
Discretized Gamma

mu_a <- ln(5.0)
sigma_a <- 0.587405

alpha ~ dnLognormal(mu_a, sigma_a)

sr := fnDiscretizeGamma(alpha, alpha, 4, false)

seq ~ dnPhyloCTMC(tree=psi,Q=Q,
 siteRates=sr,type=“DNA”)

Can add + to any
“standard” model of
sequence evolution.

Γ

Jeremy M. Brown

Modeling Rate Variation Across Sites
Proportion of Invariable Sites

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Values

P
ro

b.
 D

en
si

ty

Some proportion (I) of sites
are assumed to be unable to

change at all, presumably
due to selective constraint.

+I

Discrete probability mass on 0.

Relative Rate of EvolutionJeremy M. Brown

seq

Q

N

bli τ

Ψ
i ∈ 2N − 3

α β

TL reli

αbl
Jukes-Cantor + I

Modeling Rate Variation Across Sites
Proportion of Invariable Sites

pinv

αp

βp

{Beta

{Mixture Distribution
Jeremy M. Brown

seq

Jukes-Cantor + I
Modeling Rate Variation Across Sites

Proportion of Invariable Sites

pinv

αp

βp

{Beta

{Mixture Distribution

alpha_p <- 1.0
beta_p <- 1.0

p_inv ~ dnBeta(alpha_p, beta_p)

seq ~ dnPhyloCTMC(tree=psi, Q=Q,
 pInv=p_inv, type=“DNA”)

Jeremy M. Brown

seq

Jukes-Cantor + I
Modeling Rate Variation Across Sites

Proportion of Invariable Sites

pinv

αp

βp

{Beta

{Mixture Distribution

alpha_p <- 1.0
beta_p <- 1.0

p_inv ~ dnBeta(alpha_p, beta_p)

seq ~ dnPhyloCTMC(tree=psi, Q=Q,
 pInv=p_inv, type=“DNA”)

Jeremy M. Brown

seq

Jukes-Cantor + I
Modeling Rate Variation Across Sites

Proportion of Invariable Sites

pinv

αp

βp

{Beta

{Mixture Distribution

alpha_p <- 1.0
beta_p <- 1.0

p_inv ~ dnBeta(alpha_p, beta_p)

seq ~ dnPhyloCTMC(tree=psi, Q=Q,
 pInv=p_inv, type=“DNA”)

Jeremy M. Brown

seq

Jukes-Cantor + I
Modeling Rate Variation Across Sites

Proportion of Invariable Sites

pinv

αp

βp

{Beta

{Mixture Distribution

alpha_p <- 1.0
beta_p <- 1.0

p_inv ~ dnBeta(alpha_p, beta_p)

seq ~ dnPhyloCTMC(tree=psi, Q=Q,
 pInv=p_inv, type=“DNA”)

Jeremy M. Brown

seq

Jukes-Cantor + I
Modeling Rate Variation Across Sites

Proportion of Invariable Sites

pinv

αp

βp

{Beta

{Mixture Distribution

alpha_p <- 1.0
beta_p <- 1.0

p_inv ~ dnBeta(alpha_p, beta_p)

seq ~ dnPhyloCTMC(tree=psi, Q=Q,
 pInv=p_inv, type=“DNA”)

Can also add + I to
any “standard” model

of sequence evolution.
Jeremy M. Brown

Summarizing Phylogenetic MCMC Output
For scalar (numerical) parameters, we often report:

Mean

Median

95% Highest Posterior Density Interval

Jeremy M. Brown

Summarizing Phylogenetic MCMC Output
For trees, we often report:

Maximum A Posteriori (MAP) Tree
(“Best” Tree)

Majority-Rule Consensus Tree
(Formed from all bipartitions with posterior > 0.5)

Greedy Consensus Tree
(Formed by ranking bipartitions and adding them until tree is fully resolved)

Maximum Clade Credibility Tree
(Sampled tree whose product of bipartition probabilities is greatest)

95% Credible Set
(Set of most probable trees whose total probability is >= 95%)

mapTree(run1Trees)

Jeremy M. Brown

Summarizing Phylogenetic MCMC Output
For trees, we often report:

Maximum A Posteriori (MAP) Tree
(“Best” Tree)

Majority-Rule Consensus Tree
(Formed from all bipartitions with posterior > 0.5)

Greedy Consensus Tree
(Formed by ranking bipartitions and adding them until tree is fully resolved)

Maximum Clade Credibility Tree
(Sampled tree whose product of bipartition probabilities is greatest)

95% Credible Set
(Set of most probable trees whose total probability is >= 95%)

consensusTree(run1Trees,0.5)

Jeremy M. Brown

Summarizing Phylogenetic MCMC Output
For trees, we often report:

Maximum A Posteriori (MAP) Tree
(“Best” Tree)

Majority-Rule Consensus Tree
(Formed from all bipartitions with posterior > 0.5)

Greedy Consensus Tree
(Formed by ranking bipartitions and adding them until tree is fully resolved)

Maximum Clade Credibility Tree
(Sampled tree whose product of bipartition probabilities is greatest)

95% Credible Set
(Set of most probable trees whose total probability is >= 95%)

consensusTree(run1Trees,0.0)

Jeremy M. Brown

Summarizing Phylogenetic MCMC Output
For trees, we often report:

Maximum A Posteriori (MAP) Tree
(“Best” Tree)

Majority-Rule Consensus Tree
(Formed from all bipartitions with posterior > 0.5)

Greedy Consensus Tree
(Formed by ranking bipartitions and adding them until tree is fully resolved)

Maximum Clade Credibility Tree
(Sampled tree whose product of bipartition probabilities is greatest)

95% Credible Set
(Set of most probable trees whose total probability is >= 95%)

mccTree(run1Trees)

Jeremy M. Brown

Assessing Topological Convergence

Assessing Topological Convergence

run1Trees = readTrees(“run1.trees”)
run2Trees = readTrees(“run2.trees”)

maxdiff([run1Trees,run2Trees])

Finds the biggest difference in
estimated marginal posterior

probabilities for all bipartitions
across different replicates.

Visualizations of
Tree Space

Jeremy M. Brown

2D 3D

RevBayes Tutorial Setup

cd ~

cp -r moledata/revbayes/ ./

cd revbayes/genetree/

mv ./scripts/*.Rev .

After logging on to your VM…

Jeremy M. Brown

https://revbayes.github.io/tutorials/ctmc/

RevBayes CTMC Tutorial

I strongly encourage you to try building at least one Rev script
yourself for this tutorial, rather than simply running those that are

already available.

Also note that in the scripts that are already written, the default
number of replicate runs is 4. This is great for assessing

convergence, but will cause analyses to run fairly slowly. You can
reduce this to 2 to make sure that runs finish in a reasonable

amount of time.

You’ll also want to change the printgen option of mnModel and
mnFile to 10 (rather than 1). Otherwise, output files get huge!

Jeremy M. Brown

https://revbayes.github.io/tutorials/ctmc/

RevBayes CTMC Tutorial

Look at Table 1 in the tutorial above.

Using the model descriptions in the table, use the same
principles we’ve been practicing to set up each of these

models in RevBayes.

Fill out Table 2 for as many models as you can.

rb mcmc_JC.Rev

Jeremy M. Brown

End

Jeremy M. Brown

