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Bayer et al. 2020. Nature Plants 6: 914-920.

Pangenomes: moving beyond reference-based genomics



Reference-free genomics

Eizenga et al. 2021. Ann. Rev. Genomics and Human Genetics 



Open and closed pangenomes

Brokhurst et al. 2019. Curr. Biol.



The eukaryotic pangenome
• “The existence of pangenomes in eukaryotes is 

debated…Pangenome studies in eukaryotes are challenging 
due to their more complex genome and architectures and a lack 
of replete genome-level sampling” (Brockhurst et al. 2019. 
Current Biology)

https://pathogen-genomics.org/research/



Pangenome approach to comparative genomics

Feng et al. 2020. Nature 587:252-257.



Recent history of 
House Finch populations

~1870
bottleneck?

1940
~200 birds

historic
range



• Mycoplasma is transmitted horizontally, often at bird feeders

• Expanded throughout the eastern US in just five years

• Has now crossed the Rockies and is spreading south through 
California and the southwest.

Rapid spread of Mycoplasma in House 
Finch populations

Courtesy Cornell Lab of Ornithology



House Finch Mycoplasma genome ~1 Mb

Delaney et al. 2012. PLoS Genetics

Analyzed 81 Mycoplasma strains from 
chicken, turkey and house finch, available on 
NCBI
 
Added 12 new House Finch Mycoplasma 
strains, sequenced with PacBio
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0

1000

2000

3000

4000

0 25 50 75
No. of genomes

N
o.

 o
f g

en
es

Key
Conserved genes
Total genes

New data: Determine the alpha value using MicroPan

α= 0.4149835 

The size of the pan-genome was determined 
using 10,000 permutations by microPan

Feature Info Number	of	genes Percentage
Core	genes (99%	<=	strains	<=	100%) 674 14.586
Soft	core	genes (95%	<=	strains	<	99%) 464 10.041
Shell	genes (15%	<=	strains	<	95%) 412 8.916
Cloud	genes (0%	<=	strains	<	15%) 3071 66.457
SGF one	copy	in	all	strains 141 3.051
SGF without	recombination	signals 117 2.532
Total	genes (0%	<=	strains	<=	100%) 4621 100

Alpha value: the number of gene clusters we would see 
if we collected all genomes of the species

*the pan-genome is closed if the estimated alpha is above 1.0

Pangenome of Mycoplasma gallisepticum



Mycoplasma pangenome gene repertoire is highly strain-specific
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House Finch Mycoplasma strains have distinct CRISPR and prophage landscapes
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CRISPR landscape



Mycoplasma epizootic likely began ~2 years before first detection

Similar results using BEAST and Stairway plot

Effective 
population

size

Time



Birds have small, streamlined genomes

Waltari & Edwards. 2002. Am. Nat. Organ et al. 2010. Ann. Rev. Genom. Hum. Genet.

amphibians
mammals

birds
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Data from NCBI, accessed 13 Nov. 2021



Three scrub-jay (Aphelocoma) species 
in pangenome project

n = 15

n = 14

n = 15

Island scrub jay
A. insularus
weight 111-124 g

Florida scrub jay
A. coerulescens
weight 75 – 79.3 g

Woodhouse’s scrub jay
A. woodhouseii
weight 76.9 -77.7 g

Datapoints from gbif.org
Images from https://birdsoftheworld.org

• Goal: study genome 
complexity and estimate 
fitness effects of structural 
variation

https://birdsoftheworld.org/


Introduction

Comparative population genomics is an emerging field that
leverages variation in genomes of multiple species to under-
stand the origins of genomic diversity and natural selection
and to make inferences about patterns of divergence be-
tween closely related species. By comparing genomic variation
across multiple species, comparative population genomics
aims to discover common forces acting on homologous or
divergent regions of the genome. Comparative population
genomics approaches have been used with great success
since the 1970s, but with the rise of whole-genome sequenc-
ing (WGS) in recent years, the approach has gained renewed
vigor and detail. In its most recent incarnation, the emphasis
in comparative population genomics is less on the details of
geography of each species, and more on sampling each spe-
cies sufficiently so as to capture major patterns of variation
and identify the demographic and genetic forces that have
shaped them. Appropriate for its goals, the focus of modern
comparative genomics is often on genetics, rather than
geography.

Here we argue that comparative phylogeography—in
many ways a more mature discipline than comparative pop-
ulation genomics, but one arguably with less ongoing con-
ceptual innovation—stands as an important counterpoint to
and partner of comparative population genomics. In so far as
comparative population genomics suffers from a lack of a
rigorous geographic perspective, and often seeks to margin-
alize over geography (see Comparative Phylogeography as
Place-Based Evolutionary Biology section), comparative phylo-
geography brings an explicit geographic perspective that has
not only revealed details of species history, but can comple-
ment the goals of comparative population genomics.
Comparative phylogeography seeks to understand biotic his-
tory by finding landscape features—mountains, rivers, transi-
tion zones—that create vicariant breaks in genetic variation
across a suite of species. A major emphasis in comparative
phylogeography is to find drivers of genomic splits shared

across suites of codistributed species, and thereby find land-
scape features that ultimately explain patterns of species oc-
currence, community composition, and genetic diversity
(table 1). A related discipline, landscape genomics, usually
focuses on a smaller spatial scale and emphasizes genomic
adaptation to landscape and climate features (Manel et al.
2003; Manel and Holderegger 2013; Rissler 2016). The focus
of comparative phylogeography is usually on organismal his-
tories, rather than on the diversity of evolutionary forces shap-
ing the genome (table 1). To understand the relationships
between comparative phylogeography and comparative pop-
ulation genomics, we first ask whether comparative phylo-
geography is a viable field of inquiry and on scientific
growth trajectory. We briefly review the historical origins
and recent milestones of comparative phylogeography from
our perspective as empiricists working on terrestrial verte-
brates. We then update our understanding of the global dis-
tribution of phylogeographic studies and argue that, as a
“place-based” discipline, comparative phylogeography has
great appeal for local and regional scientific communities
and public education around the world in ways that are chal-
lenging for comparative population genomics. We conclude
that, although it has yet to fully embrace the genomics revo-
lution, comparative phylogeography is still a vibrant discipline
that stands to make important contributions to evolutionary
biology and in particular can leverage its “sense of place” to
help include diverse communities in the research enterprise
around the globe.

Is Comparative Phylogeography Dead?

A Brief History of Comparative Phylogeography

Early in its evolution, phylogeography adopted a comparative
perspective, seeking to find common patterns across codis-
tributed species. Although the first phylogeographic studies
were conducted on single species (Avise et al. 1979), very
quickly the field adopted a comparative approach, motivated

Table 1

Conceptual Relationships between the Fields of Comparative Population Genomics, Landscape Genomics, and Comparative Phylogeography

Concept/Parameter Comparative Population Genomics Landscape Genomics Comparative Phylogeography

Comparative perspective Growing Nascent Mature

Emphasis on space No Yes Yes

Geographic scale Random mating population Region Biome

Temporal scale Arbitrary Recent Deep

Focus on:

selection versus neutrality Both Both Neutrality

recombination Yes Not yet considered Not yet considered

geography versus environment Nuisance parameters Environment Both

Future use of whole-genome

sequencing

Yes Likely Unlikely

Growth out of museum collections

community

No No Partial
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Abstract

Comparative population genomics is an ascendant field using genomic comparisons between species to draw inferences about
forces regulating genetic variation. Comparative phylogeography, by contrast, focuses on the shared lineage histories of species
codistributed geographically and is decidedly organismal in perspective.Comparativephylogeography is approximately35 years old,
and, by some metrics, is showing signs of reduced growth. Here, we contrast the goals and methods of comparative population
genomics and comparative phylogeography and argue that comparative phylogeography offers an important perspective on evo-
lutionary history that succeeds in integrating genomics with landscape evolution in ways that complement the suprageographic
perspective of comparative population genomics. Focusing primarily on terrestrial vertebrates, we review the history of comparative
phylogeography, its milestones and ongoing conceptual innovations, its increasingly global focus, and its status as a bridge between
landscape genomics and the process of speciation. We also argue that, as a science with a strong “sense of place,” comparative
phylogeographyoffersabundant“place-based”educationalopportunitieswith its focusongeographyandnaturalhistory,aswell as
opportunities for collaborationwith local communitiesand indigenouspeoples.Althoughcomparativephylogeographydoesnot yet
require whole-genome sequencing for many of its goals, we conclude that it nonetheless plays an important role in grounding our
interpretation of genetic variation in the fundamentals of geography and Earth history.

Key words: Gott Earth projection, whole-genome sequencing, landscape genomics, place-based education, indigenous
knowledge.

Significance

Comparative phylogeography shares many concepts and techniques with comparative population genomics, yet
differs in its emphasis on geography, codistribution of species, and genetic structure within species. We review the
history of comparative phylogeography and its global expansion in the last 12 years and suggest that it complements
comparative population genomics in its ability to engage students, indigenous groups and the public via its focus on
geography, prominent landscape features, and Earth history.

! The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
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Introduction
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Here we argue that comparative phylogeography—in
many ways a more mature discipline than comparative pop-
ulation genomics, but one arguably with less ongoing con-
ceptual innovation—stands as an important counterpoint to
and partner of comparative population genomics. In so far as
comparative population genomics suffers from a lack of a
rigorous geographic perspective, and often seeks to margin-
alize over geography (see Comparative Phylogeography as
Place-Based Evolutionary Biology section), comparative phylo-
geography brings an explicit geographic perspective that has
not only revealed details of species history, but can comple-
ment the goals of comparative population genomics.
Comparative phylogeography seeks to understand biotic his-
tory by finding landscape features—mountains, rivers, transi-
tion zones—that create vicariant breaks in genetic variation
across a suite of species. A major emphasis in comparative
phylogeography is to find drivers of genomic splits shared

across suites of codistributed species, and thereby find land-
scape features that ultimately explain patterns of species oc-
currence, community composition, and genetic diversity
(table 1). A related discipline, landscape genomics, usually
focuses on a smaller spatial scale and emphasizes genomic
adaptation to landscape and climate features (Manel et al.
2003; Manel and Holderegger 2013; Rissler 2016). The focus
of comparative phylogeography is usually on organismal his-
tories, rather than on the diversity of evolutionary forces shap-
ing the genome (table 1). To understand the relationships
between comparative phylogeography and comparative pop-
ulation genomics, we first ask whether comparative phylo-
geography is a viable field of inquiry and on scientific
growth trajectory. We briefly review the historical origins
and recent milestones of comparative phylogeography from
our perspective as empiricists working on terrestrial verte-
brates. We then update our understanding of the global dis-
tribution of phylogeographic studies and argue that, as a
“place-based” discipline, comparative phylogeography has
great appeal for local and regional scientific communities
and public education around the world in ways that are chal-
lenging for comparative population genomics. We conclude
that, although it has yet to fully embrace the genomics revo-
lution, comparative phylogeography is still a vibrant discipline
that stands to make important contributions to evolutionary
biology and in particular can leverage its “sense of place” to
help include diverse communities in the research enterprise
around the globe.

Is Comparative Phylogeography Dead?

A Brief History of Comparative Phylogeography

Early in its evolution, phylogeography adopted a comparative
perspective, seeking to find common patterns across codis-
tributed species. Although the first phylogeographic studies
were conducted on single species (Avise et al. 1979), very
quickly the field adopted a comparative approach, motivated

Table 1

Conceptual Relationships between the Fields of Comparative Population Genomics, Landscape Genomics, and Comparative Phylogeography

Concept/Parameter Comparative Population Genomics Landscape Genomics Comparative Phylogeography

Comparative perspective Growing Nascent Mature

Emphasis on space No Yes Yes

Geographic scale Random mating population Region Biome

Temporal scale Arbitrary Recent Deep

Focus on:

selection versus neutrality Both Both Neutrality

recombination Yes Not yet considered Not yet considered

geography versus environment Nuisance parameters Environment Both

Future use of whole-genome

sequencing

Yes Likely Unlikely

Growth out of museum collections
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No No Partial
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PacBio HiFi reads are long and accurate

8

HiFi reads: long and accurate 
` HiFi reads: long & accurate 
` A breakthrough every ~5 years
` Most existing assemblers cannot make full use of the accuracy 

Coutesy Haoyu Cheng, Dana Farber Cancer Institute
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HiFi reads: long and accurate PacBio HiFi reads are long and accurate
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Assembly graph construction
` Build string graph with the overlaps between reads coming from the 

same haplotype 

Hifiasm – a HiFi accurate read assembler 
that resolves haplotypes

2

De novo genome assembly

Genome assembly

Coutesy Haoyu Cheng, Dana Farber Cancer Institute
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Genome assembly with hifiasm yields 
~1.3 Gb primary and haplotype assemblies

A. woodhouseii



Hifiasm – improved assemblies using HiC

16

Single-sample diploid assembly: overview

` Input: 

` Pacbio HiFi reads: accurate local phasing

` Hi-C reads: rough long-range phasing

` Output: 

` HiFi + Hi-C: two fully phased haplotypes

` HiFi-only: two partial phased haplotypes 

17

Hi-C read alignment 
` Procedure:

` Identify heterozygous unitigs by coverage 
` Build index by unique k-mers from heterozygous unitigs
` Align Hi-C reads using unique k-mers



HiC greatly improves contiguity of scrub jay 
assemblies



PSMC analysis confirms variation in 
effective population size through time

Pairwise Sequentially Markovian Coalescent (Li & Durbin 2011. Nature)
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RepeatMasker analysis suggests over 25% repeats and transposable elements
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Satellites are long and prevalent in 
scrub jay genomes
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Abundance of an 18-kb unit repeat 
satellite varies strongly among species
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Pangenome graphs capture 
structural variation within species
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Figure 1
Pangenomic models. (a, i) In reference-based genomic analyses, all genomes (A–D) are compared with each other via their relationship
to the reference genome (R). (ii) In a pangenomic setting, one attempts to model direct relationships between all the genomes in the
analysis, from which a particular reference is chosen arbitrarily. (iii) When extending the analysis with a new genome, !, one adds it to
the genomic model by comparing it with the reference genome. (iv) By contrast, adding a new genome to a pangenomic analysis
compares it directly with all other genomes in the model. (b, i) Regions of some genomes are unalignable against the reference and
cannot be represented in a list of variants. (ii) A graphical model of the genomes allows a direct all-to-all comparison, capturing all of
their sequence relationships. (c, i) A collection of sequences representing a pangenome. (ii) Multiple sequence alignment of the
sequences captures their mutual relationships. (d, i) In a de Bruijn graph, sequences are represented without bias, but variants may
correspond to larger graph structures. (ii) An acyclic sequence graph is equivalent to the multiple sequence alignment. (iii) A generic
sequence graph can compactly represent a structural variant (shown in orange), using edges between the forward and reverse strands of
the graph to indicate the presence of an inversion.

in scope, these analyses were effectively pangenomic. They were based on many-to-many rela-
tionships between sequences, typically derived by multiple sequence alignment. Precise multiple
sequence alignment methods are expensive, with popular algorithms scaling cubically with the
number of input sequences (102). It is infeasible to apply such computationally demanding meth-
ods to the data scales obtained with modern high-throughput sequencing. Instead, high-quality
genome assemblies and high-throughput sequencing have encouraged resequencing methodolo-
gies, wherein reads from each sample are aligned to a single reference genome. This approach
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Pangenomic models. (a, i) In reference-based genomic analyses, all genomes (A–D) are compared with each other via their relationship
to the reference genome (R). (ii) In a pangenomic setting, one attempts to model direct relationships between all the genomes in the
analysis, from which a particular reference is chosen arbitrarily. (iii) When extending the analysis with a new genome, !, one adds it to
the genomic model by comparing it with the reference genome. (iv) By contrast, adding a new genome to a pangenomic analysis
compares it directly with all other genomes in the model. (b, i) Regions of some genomes are unalignable against the reference and
cannot be represented in a list of variants. (ii) A graphical model of the genomes allows a direct all-to-all comparison, capturing all of
their sequence relationships. (c, i) A collection of sequences representing a pangenome. (ii) Multiple sequence alignment of the
sequences captures their mutual relationships. (d, i) In a de Bruijn graph, sequences are represented without bias, but variants may
correspond to larger graph structures. (ii) An acyclic sequence graph is equivalent to the multiple sequence alignment. (iii) A generic
sequence graph can compactly represent a structural variant (shown in orange), using edges between the forward and reverse strands of
the graph to indicate the presence of an inversion.

in scope, these analyses were effectively pangenomic. They were based on many-to-many rela-
tionships between sequences, typically derived by multiple sequence alignment. Precise multiple
sequence alignment methods are expensive, with popular algorithms scaling cubically with the
number of input sequences (102). It is infeasible to apply such computationally demanding meth-
ods to the data scales obtained with modern high-throughput sequencing. Instead, high-quality
genome assemblies and high-throughput sequencing have encouraged resequencing methodolo-
gies, wherein reads from each sample are aligned to a single reference genome. This approach
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Pangenome graphs of haplotype 
variation in Scrub Jays

centromere, chromosome 15



Genomic stability of 400-kb hox1a region in Western Scrub Jays

2.5 kb polymorphic indel7.5 kb polymorphic indel

Pangenome graphs
generated with odgi

and visualized with Bandage

Guarracino et al. 2021. 
Bioinformatics, in press.
Wick et al. 2015. 
Bioinformatics 31:3350.



Smaller regions of complexity in hox1a region

White regions are indels between haplotypes
Gray regions are SNP variation
Red regions are low-complexity and repetitive regions
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Structural variation in another conservatively 
evolving coding region
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Species	distribution	in	~1990
Maps: Birds of North America 
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Structural variants in the thyroid 
receptor-b gene
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The chicken MHC is small (~99 kb) and compact

(not to scale)
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Mhc class II peptide-binding region shows 
solid evidence of balancing selection
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Estimated with omegamap,
Wilson & McVean. 2006. Genetics
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Mhc class II peptide binding regions are 
phylogenetically diverse on individual haplotypes

MCZ_orn_366490.hap1.h1tg000470l MCZ_Orn_366498.hap2.h2tg000086l MCZ_orn_366494.hap1.h1tg000827l MCZ_Orn_366498.hap2.h2tg000086l

MCZ_orn_365338.hap1.h1tg000795l MCZ_Orn_365327.hap2.h2tg000373l MCZ_Orn_366487.hap2.h2tg000648l MCZ_orn_365326.hap1.h1tg000679l

MCZ_orn_366490.hap1.h1tg000470l MCZ_Orn_366498.hap2.h2tg000086l MCZ_orn_366494.hap1.h1tg000827l MCZ_Orn_366498.hap2.h2tg000086l

MCZ_orn_365338.hap1.h1tg000795l MCZ_Orn_365327.hap2.h2tg000373l MCZ_Orn_366487.hap2.h2tg000648l MCZ_orn_365326.hap1.h1tg000679l

Phylogenetic paths of 
Mhc exon2 alleles

on individual haplotypes



Visualization of MHC class II region in 22 haplotypes 
of Woodhouse’s scrub-jays with odgi

Complex repeat structures produce high haplotype diversity

made with odgi and pangenome graph builder pipeline
Guarracino et al. 2021. Bioinformatics, in press. 



Example satellites in MHC class II region of Woodhouse’s scrub jay
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made with odgi and pangenome graph builder pipeline
Guarracino et al. 2021. Bioinformatics, in press. 

odgi visualization of pangenome graph depth based on 
26 MHC-containing scrub jay haplotypes, up to ~480 kb

White regions are indels between haplotypes
Gray regions are SNP variation
Red regions are low-complexity and repetitive regions

Pangenome graph depth shows single-copy 
regions surrounded by complex VNTRs



Graph depth shows single-copy regions 
surrounded by complex VNTRs
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Structural variation in another 
dynamic genic region
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MHC region has more numerous and longer 
structural variants than hox1a region
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max indel for hox1a 
region: 7352 bp

max indel for MHC 
region: 19011 bp

many microsatellites 
in both regions – about 1/3 of all SVs



Low frequency of large SVs in both MHC 
and hox1a regions (~400-kb)
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Telomeres – barometers of age and stress in birds

Ashgar et al. 2015. Science 347:436-438

infected birds

uninfected birds

https://medibalans.com/telomere/
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Scrub jay telomeres are usually ~3-10 kb long

Miga et al. 2020. Nature 485:79-87.



Telomere sequences are generally found 
at chromosome ends

 25Mb

 50Mb

 75Mb

100Mb

125Mb

150Mb

AW_365336_FSJragtag.v1.fasta reference scaffold

sc
af

fo
ld

 le
ng

th



1 2 3 4 5 6 7

50
00
0

60
00
0

70
00
0

80
00
0

telo$Age_years

te
lo
$t
el
ol
en
gt
h

Telomere abundance declines with age in Florida birds

Age of bird (years)

To
ta

l t
el

om
er

e 
le

ng
th

 (b
p)



Conclusions
• Scrub-jay genomes are repeat-rich
• The MHC class II region is much more complex than chicken 

and likely dispersed on multiple contigs and chromosomes
• Pangenome graph analysis illustrates dynamic and conserved 

regions of the scrub-jay genome
• Large structural variants appear in lower frequency than small 

ones
• Pangenome analysis will likely become the common standard
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