Pangenomes as a new tool for studying ecology and evolution of natural populations

Scott V. Edwards Museum of Comparative Zoology, Harvard University, Cambridge, USA

Pangenomes: moving beyond reference-based genomics

Bayer et al. 2020. Nature Plants 6: 914-920.

Reference-free genomics

Genomic

Pangenomic

Reference model

Eizenga et al. 2021. Ann. Rev. Genomics and Human Genetics

Brokhurst et al. 2019. Curr. Biol.

The eukaryotic pangenome

 "The existence of pangenomes in eukaryotes is debated...Pangenome studies in eukaryotes are challenging due to their more complex genome and architectures and a lack of replete genome-level sampling" (Brockhurst et al. 2019. *Current Biology)*

https://pathogen-genomics.org/research/

Pangenome approach to comparative genomics

Feng et al. 2020. Nature 587:252-257.

Rapid spread of *Mycoplasma* in House Finch populations

Courtesy Cornell Lab of Ornithology

• *Mycoplasma* is transmitted horizontally, often at bird feeders

• Expanded throughout the eastern US in just five years

• Has now crossed the Rockies and is spreading south through California and the southwest.

House Finch Mycoplasma genome ~1 Mb

Analyzed 81 Mycoplasma strains from chicken, turkey and house finch, available on NCBI

Added 12 new House Finch Mycoplasma strains, sequenced with PacBio

Used

Delaney et al. 2012. PLoS Genetics

Pangenome of Mycoplasma gallisepticum

Mycoplasma pangenome gene repertoire is highly strain-specific

House Finch *Mycoplasma* strains have distinct CRISPR and prophage landscapes

Mycoplasma epizootic likely began ~2 years before first detection

Birds have small, streamlined genomes

Waltari & Edwards. 2002. Am. Nat.

Organ et al. 2010. Ann. Rev. Genom. Hum. Genet.

Avian genomes are growing with each new technology

The Evolution of Comparative Phylogeography: Putting the Geography (and More) into Comparative Population Genomics

GBE

Scott V. Edwards (1^{,2,*}, V. V. Robin³, Nuno Ferrand⁴, and Craig Moritz⁵

Table 1

Conceptual Relationships between the Fields of Comparative Population Genomics, Landscape Genomics, and Comparative Phylogeography

Concept/Parameter	Comparative Population Genomics	Landscape Genomics	Comparative Phylogeography
Comparative perspective	Growing	Nascent	Mature
Emphasis on space	No	Yes	Yes
Geographic scale	Random mating population	Region	Biome
Temporal scale	Arbitrary	Recent	Deep
Focus on:			
selection versus neutrality	Both	Both	Neutrality
recombination	Yes	Not yet considered	Not yet considered
geography versus environment	Nuisance parameters	Environment	Both
Future use of whole-genome sequencing	Yes	Likely	Unlikely
Growth out of museum collections community	No	No	Partial

Edwards et al. 2021. Genome Biology and Evolution 14: 10.1093/gbe/evab176

PacBio HiFi reads are long and accurate

- HiFi reads: long & accurate
- A breakthrough every ~5 years
- Most existing assemblers cannot make full use of the accuracy

Coutesy Haoyu Cheng, Dana Farber Cancer Institute

PacBio HiFi reads are long and accurate

Hifiasm – a HiFi accurate read assembler that resolves haplotypes

Scrub-jay PacBio HiFi data characteristics

Genome assembly with hifiasm yields ~1.3 Gb primary and haplotype assemblies

Hifiasm – improved assemblies using HiC

Procedure:

- Identify heterozygous unitigs by coverage
- Build index by unique *k*-mers from heterozygous unitigs
- ▶ Align Hi-C reads using unique *k*-mers

HiC greatly improves contiguity of scrub jay assemblies

PSMC analysis confirms variation in effective population size through time

Pairwise Sequentially Markovian Coalescent (Li & Durbin 2011. Nature)

RepeatMasker analysis suggests over 25% repeats and transposable elements

Satellites are long and prevalent in scrub jay genomes

Abundance of an 18-kb unit repeat satellite varies strongly among species

Pangenome graphs capture structural variation within species

Eizenga et al. 2021. Ann. Rev. Genomics Hum. Genetics

Pangenome graphs of haplotype variation in Scrub Jays

Genomic stability of 400-kb hox1a region in Western Scrub Jays

Smaller regions of complexity in hox1a region

Structural variation in another conservatively evolving coding region

high

Demographic history of House Finches

Structural variants in the thyroid receptor-β gene

The chicken MHC is small (~99 kb) and compact

Unprecedented complexity of MHC class II genes in scrub jays

Mhc class II peptide-binding region shows solid evidence of balancing selection

Mhc class II peptide binding regions are phylogenetically diverse on individual haplotypes

Phylogenetic paths of Mhc exon2 alleles on individual haplotypes

MCZ orn 366494.hap1.h1tg0008271 MCZ Orn 366498.hap2.h2tg000086

MCZ Orn_366487.hap2.h2tg000648l

MCZ Orn 366498 han2

made with odgi and pangenome graph builder pipeline Guarracino et al. 2021. *Bioinformatics*, in press.

Example satellites in MHC class II region of Woodhouse's scrub jay

GGGT GGTT GGGT TTGG GGTCACTGGGACACCTCGGGGACAGTTTTGGGGCGGGTTTGGGGCGGTGTTTGGGGCAATTTTGGGGCCAGTTTTGGGGCCGGTTTTAGGGGGAGGTTTCGGGCAGTTTTGGGGCGGGGTGTTGGGGAGGTTTTGGGGCAG CACT GCGC TTGG GGTT iGGGG CGGTGAGAGCCCCAGGGGCACCCTTGGGGGACAATTTTGGGGGCCAATTTTGGGGGCCAATTTTGGGGGCCAATTTTGGGGGACACTTTGGGGGACACCTTGGGGGACACCTTGGGGGACACCTTGGGGGACACTTTTGGGGGCCAAATTTTGGGGGCCAAATTTGGGGGACACTTGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGACACTTTGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTGGGGACACTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTGGGGGACACTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTGGGGGACACTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTTGGGGGACACTTGGGGGACACTTGGGGGACACTTGGGGGACACTTGGGGGACACTTGGGGACACTTGGGGACACTTGGGGACACTTGGGGACACTTGGGGGACACTTGGGGGACACTTGGGGACACTTGGGGACACTTGGGGACACTTGGGGACACTTGGGGACACTTGGGGACACTTGGGGACACTTGGGGACAC TTGAGGGGACATTTGGGGACAATTTGGGGGACAATTTGGGGGACAATTTGGGGGACAATTTTGGGGGACAATTTGGGGGACAATTTTGGGGGACAATTTTGGGGGACAATTTGGGGGACAATTTTGGGGGACAATTTGGGGGACAATTTTGGGGGACAATTTTGGGGGACAATTTGGGGGACAATTTGGGGGACAATTTGGGGGACAATTTTGGGGGACAATTTTGGGGGACAATTTGGGGGACAATTTTGGGGGACAATTTGGGGGACAATTTGGGGGACAATTTGGGGGACAATTTTGGGGGACAATTTTGGGGGACAATTTTGGGGGACAATTTGGGGGACAATTTTGGGGGACAATTTTGGGGGACAATTTGGGGGACAATTTGGGGGACAATTTTGGGGGACAATTTGGGGGACAATTTTGGGGGACAATTTGGGGGACAATTTTGGGGGACAATTTTGGGGGACAATTTGGGGGACAATTTTGGGGGACAATTTGGGGGACAATTTTGGGGGACAATTTGGGGGACAATTTTGGGGGACAATTTGGGGGACAATTTTGGGGGACAATTTGGGGGACAATTTTGGGGGACAATTTGGGGGACAATTTTGGGGGACAATTTGGGGGACAATTTTGGGGGACAATTTTGGGGGACAATTTGGGGGACAATTTTGGGGGACAATTTGGGGGACAATTTTGGGGGACAATTTTGGGGGACAATTTGGGGGACAATTTGGGGGACAATTTGGGGGACAATTTGGGGGACAATTTGGGGGACAATTTGGGGGACAATTTGGGGGACAATTTGGGGGACAATTTGGGGGACAATTGGGGGACAATTTGGGGGACAATTTGGGGGACAATTTGGGGGACAATTTTGGGGGACAATTTGGGGGACAATTTGGGGACAATTGGGGACAATTTGGGGACAATTTTGGGGGACAATTTGGGGGACAATTTGGGGGACAATTTGGGGGACAATTTTGGGGGACAATTTTGGGGGACAATTTTGGGGGACAATTTGGGGGACAATTTTGGGGGACAATTTTGGGGGACAATTTGGGGGACAATTTTGGGGGACAATTTGGGGGACAATTTTGGGGGACAATTTGGGGGACAATTTGGGGGACAATTTTGGGGGACAATTTTGGGGGACAATTTGGGGGACAATTTTGGGGGACATTTGGGGGACATTGGGGGACGATTGGGGGGGACGGATTGGGGGACGGATGAATTTGGGGGACAATTTGGGGGACATTGGGGGACTTTGGGGGAC TTAAGGATATTTTGGGGACACTTTGGGGGACACTTTGGGGGACAATTTTGGGGGCCAATTTTGGGGGCCAATTTTGGGGGCCATTTTGGGGGCCAATTTGGGGGCCAATTTTGGGGGCCAATTTGGGGGCCAATTTTGGGGGCCAATTTGGGGGCCAATTTTGGGGGCCAATTTTGGGGGCCAATTTGGGGGCCAATTTTGGGGGCCAATTTTGGGGGCCAATTTTGGGGGCCAATTTTGGGGGCCAATTTTGGGGGCCAATTTTGGGGGCCCAATTTTGGGGGCCAATTTTGGGGGCCAATTTTGGGGGCCAATTTTGGGGGCCAATTTTGGGGGCCAATTTTGGGGGCCAATTTTGGGGGCCAATTTTGGGGGCCAATTTTGGGGGCCAATTTTGGGGGCCAATTTTGGGGGCCCAATTTTGGGGGCCCAATTTTGGGGGCCCAATTTTGGGGGCCCAATTTTGGGGGCCCAATTTTGGGGGCCCAATTTTGGGGGCCCAATTTTGGGGGCCCAATTTTGGGGGCCCAATTTTGGGGGCCCAATTTTGGGGGCCCAATTTTGGGGGCCCAATTTTGGGGGCCCAATTTGGGGGCCCAATTTTGGGGGCCCAATTTTGGGGGCCCAATTTTGGGGGCCCAATTTTGGGGGCCCAATTTTGGGGGCCCAATTTTGGGGGCCCAATTTTGGGGGCCCAATTTGGGGGCCCAATTTGGGGGCCCAATTTGGGGGCCCAATTTGGGGGCCCAATTTGGGGGCCCAATTTGGGGGCCCAATTTGGGGGCCCAATTTGGGGGCCCAATTTGGGGGCCCAATTTGGGGGCCCAATTTGGGGGCCCAATTTGGGGGCCCAATTTGGGGGCCCAATTTGGGGGCCCAATTTGGGGGCCCAATTGGGGGCCCAATTTGGGGGCCCAATTTGGGGCCCAATTTGGGGCCCAATTTGGGGGCCCAATTTGGGGGCCCAATTTGGGGCCCAATTTGGGGGCCCAATTTGGGGGCCCAATTTGGGGGCCCAATTTGGGGGCCCAATTTGGGGGCCCAATTTGGGGGCCCAATTTGGGGGCCCAATTTGGGGGCCCAATTTGGGGGCCCAATTTGGGGGCCCAATTTGGGGGCCCAATTTGGGGGCCCAATTTGGGGGCCCAATTTGGGGGCCCAATTTGGGGGCCCAATTTGGGGGCCCAATTGGGGCCCAATTTGGGGGCCCAATTTGGGGGCCCAATTGGGGCCCAATTTGGGGGCCCAATTTGGGGCCCAATTTGGGGGCCCAATTTGGGGGCCCAATTTGGGGGCCCAATTTGG TTTGGGAGGTTTGGGAGCATTTTGGGGGCATTTTGGGGGCATTTTGGGGGCATTTTGGGGGCCATTTTGGGGGGCCATTTTGGGGGGCCATTTTGGGGGGCCACTTTGGGGGCCACTTGGGGGCCACTTGGGGGCCACTTTGGGGGCCACTTTGGGGGCCACTTTGGGGGCCACTTGGGGCCACTTGGGGGCCACTGGGGCCACTTGGGGGCCACTTGGGGGCCACTTGGGGGCCACTTGGGGCCACTTGGGGGCCACTTGGGGGCCACTTGGGGGCCACTTGGGGGCCACTTGGGG TT6GGAGGGTTT6GGGGACATTTT6GGGGACATTTT6GGGGCCACTT6GGGCCACTTT6GGGGCCACTTT6GGGGCCACTTT6GGGGCCACTTT6GGGGCCACTTT6GGGCCACTTT6GGGCCACTTT6GGGCCACTTT6GGGCCACTTT6GGGGCCACTTT6GGGCCACTTT6GGGCCACTTT6GGGCCACTTT6GGGCCACTTT6GGGCCACTTT6GGGCCACTTT6GGGCCACTTT6GGGCCACTTT6GGGCCACTTT6GGGCCACTTT6GGGCCACTTT6GGGCCACTTT6GGGCCCACTTT6GGGCCCACTTT6GGGCCCACTTT6GGGCCACTT6GGGCCACTTT6GGGCCACTTT6GGGCCACTTT6GGGCCACTTT6GGGCCACTTT6GGGCCACTTT6GGGCCACTTT6GGGCCACTTT6GGGCCACTTT6GGGCCACTTT6GGGCCACTTT6GGGCCACTTT6GGGCCACTTT6GGGCCACTTT6GGGCCACTTT6GGGCCCACTTT6GGGCCACTTT6GGGCCACTTT6GGGCCACTTT6GGGCCACTTT6GGGCCACTTT6GGGCCACTTT6GGGCCCACTTT6GGGCCCACTTT6GGGCCCACTTT6GGGCCCACTTT6GGGCCCACTTT6GGGCCCACTTT6GGGCCCACTTT6GGGCCCACTTT6GGGCCCACTTT6GGGCCCACTTT6GGGCCCACTTT6GGGCCCACTTT6GGGCCCACTT TGGGAGGTTTGGGGCCGATTTTGAGGGCCATTTTGAGGGGCCACCTGGAGGATGGTGAGGGACACCAGGGCCACCTTGGGGACACCTTGGGGACGATTTGGGGGCCACTTTGGGGCCACTTTGGGGCCACTTTGGGGCCACTTTGGGGCCCACTTGGGGCCCACTTTGGGGCCCACTTTGGGGCCCACTTTGGGGCCCACTTTGGGGCCCACTTTGGGGCCCACTTGGGGCCCACTTGGGGCCCACTTGGGCCCACTTGGGGCCCACTTTGGGGCCCACTTTGGGGCCCACTTGGGCCCACTTTGG GGGCCACCTGGAGATGGTTGGGGACACTCAGGGACACTCAGGGCCACTTTGGGGGACGATTTGGGGGACGATTTGGGGGCCACTTGGGGCCACTTTGGGGGCCACTTGGGGGCCACTTGGGGCCACTGGGGCCACTGGGGCCACTTGGGGCCACTGGGCCACTTGGGGCCACTGGGGCCACTTGGGGGCCACTTGGGGGCCACTTGGGGCCACTTGGGGCCACTTGGGGCCACTTGGGGCCACTTGGGGCCACTTGGGGCCACTGGGCCACTTGGGGCCACTTGGGGCCACTTGGGGCCACTTGGGGCCACTTGGGGCCACTTGGGGCCACTTGGGGCCACTTGGGGCCACTTGGGGCCACTTGGGGCCACT ATTTGGGGGAGGTTTGGGGGTCGACTTTGGGGGCCACTTTGGGGGCCACTTTGGGGGCCACTTTGGGGGCCACTTTGGGGGCCACTTTGGGGGCCACTTTGGGGGCCACGCAC ATTTEGAGGGTTEGAGGACATTTEGAGGGACATTTEGAGGGACATTTEGAGGGACATTTEGAGGGACATTTEGAGGGACATTTEGAGGGACATTTEGAGGGACATTTEGAGGGACATTTEGAGGGACATTTEGAGGGACATTTEGAGGGACATTTEGAGGGACATTTEGAGGGACATTTEGAGGACATT

Pangenome graph depth shows single-copy regions surrounded by complex VNTRs

made with odgi and pangenome graph builder pipeline Guarracino et al. 2021. *Bioinformatics*, in press.

Graph depth shows single-copy regions surrounded by complex VNTRs

low

high

MHC region has more numerous and longer 1a region

Low frequency of large SVs in both MHC and hox1a regions (~400-kb)

Telomeres – barometers of age and stress in birds

RESEARCH | REPORTS

CHRONIC INFECTION

Hidden costs of infection: Chronic malaria accelerates telomere degradation and senescence in wild birds

https://medibalans.com/telomere/

Ashgar et al. 2015. Science 347:436-438

CTCACCCTTAGGGGTTAGGTTGGGTTAGGGTTAGGTTAGGTTAGGTTGGTTAGGTTAGGTTAGGTTGGTTAGGTTAGGTTAGGTTGGTTAGGTTAGGTTAGGTTGGTTAGGTTAGGTTAGGTTGGTTAGGTTAGGTTAGGTTAGGTTAGGTTAGGTTAGGTTAGGTTAGGTTAGGTTAGGTTAGGTTAGGTTGGTTAGGGTTTAGGGTTAGGTTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGT GTTAGGGTTAGGGTTAGGGGTTAGGGGTTAGGGGTTAGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGTTAGGTTAGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGTTGGTTAGGGTTAGGTTAGGTTAGGTTGGTTAGGTTAGGTTAGGTTGGTTAGGTTAGGTTAGGTTGGTTAGGTTAGGTTAGGTTGGTTAGGTTAGGTTGGTTGGTTAGGTTGGTTGGTTAGGTTAGGTTGGTTGGTTAGGTTGGTGGTTGGGTTGGTTGGTTGGGTTGGTTGGTTGGGTTGGTTGGTTGGGTTGGTTGGTTGGGTTGGTTGG **TAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGT TAGGG**TTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGG**TTAGGGTTAGGGT** TAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGCTAGGGTT **AGGG**TTAGGGGTTAGGTTAGGGTTAGGTTAGGTTAGGTTAGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGG AGGGTTAGGGGTTAGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGTTAGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGTTAGGTTAGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGTTAGGGTTAGGGTTAGGTTAGGTTAGGTTAGGTTAGGTTAGGGTTAGGTTGGGTTAGGTTAGGGTTAGGGTTAGGGTTGGGTTGGGTTGGTTAGGGTTGGGTTAGGGTTAGGGTTAGGGT TAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAG **GGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAG CC**TTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGG**TTAGGGTTAGGGTTAGGGTTAG GGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTAGG C**TTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGG **C**TTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGG GTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTTGGGTT<u>AGGGTTAGGGTTAGG</u> **C**TTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGG<mark>TTAGGGTTAGGGTTAGGGTTAGG</mark> GTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGG **GTTAGGGTTAGGGT**TTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGGTTAGGGTTAGGGTTAGGGTTAGGGGTTAGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGTTAGGTTAGGTTAGGGTTAGGTTAGGTTAGGGTTAGGTTAGGGTTAGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGTTAGGTTAGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTT GGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTT AGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGT TAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGGT TAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGT **TGCC**TTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGG<mark>TTTGCGCGTTAGGG</mark>T **TAGGGTTAGGGTTTGGG**TTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGT TAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGT TAGGGTTAGGGTTAGGGTTGGGTTAGGGGTTAGGGTTAGGGTTAGGGGTTAGGGGTTAGGGGT TAGGGTTAGGGTTTGGGTTAGGGTTAGGGGTAGGGTTAGGGTTAGGGTTTGGGTTAGGGT **TAGGG**TTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGG**GTTAGGGTTAGGGTTAGG** TTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGG<mark>TTAGGGTTAGGGTTAGGGTTAGGG</mark> TTGGGTTAGGGTTAGGGTTGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTT AGGGTTAGGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGT

GGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGGTTAGGGGTTAGGGGTTAGGGGTT AGGGTTAGGGTAGGGTTAGGGGTTAGGGGTTAGGGGTTAGGGGTTAGGGGTTAGGG TTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGG**TTAGGGTTAGGGTTAGGG** TTGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGT TAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGGTTAGGGGTAGGGTTAGGG TTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGG**TTAGGGTTAGGGTTAGGG TTAGEGTTGGG**TTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGG **TAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTT** AGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAG GGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTA GGGTTAGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAG **CC**TTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAG **CC**TTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAG **CC**TTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGG**TTAGGGTTAGGGTTAGGGTTA**G **GGTTAGGGTTGGG**TTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGG **C**TTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGG<mark>TTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGG</mark> **C**TTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGG**GTTAGGGTTAGGGTTAG CC**TTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAG **CC**TTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAG **CC**TTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAG GGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAG GGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGG **CC**TTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAG GGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAG **CC**TTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGG<mark>TTAGGGTTAGGGTTAGGGTTAG</mark> GGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGG **C**TTAGGGTTAGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGT **CC**TTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGG GTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGG<mark>TTAGGGTTAGGGTTAGG</mark> **C**TTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGG**TTAGGGTTAGGGTTAGGGTTAGG**

Scrub jay telomeres are usually ~3-10 kb long

Miga et al. 2020. Nature 485:79-87.

Telomere sequences are generally found at chromosome ends

Telomere abundance declines with age in Florida birds

Conclusions

- Scrub-jay genomes are repeat-rich
- The MHC class II region is much more complex than chicken and likely dispersed on multiple contigs and chromosomes
- Pangenome graph analysis illustrates dynamic and conserved regions of the scrub-jay genome
- Large structural variants appear in lower frequency than small ones
- Pangenome analysis will likely become the common standard

Acknowledgements

