Pangenomes as a new tool for studying ecology and evolution of natural populations

Scott V. Edwards

Museum of Comparative Zoology, Harvard University, Cambridge, USA

Pangenomes: moving beyond reference-based genomics

Reference-free genomics

Eizenga et al. 2021. Ann. Rev. Genomics and Human Genetics

Brokhurst et al. 2019. Curr. Biol.

The eukaryotic pangenome

• "The existence of pangenomes in eukaryotes is debated...Pangenome studies in eukaryotes are challenging due to their more complex genome and architectures and a lack of replete genome-level sampling" (Brockhurst et al. 2019. *Current Biology)*

https://pathogen-genomics.org/research/

Pangenome approach to comparative genomics

Feng et al. 2020. Nature 587:252-257.

Birds have small, streamlined genomes

Waltari & Edwards. 2002. Am. Nat.

Organ et al. 2010. Ann. Rev. Genom. Hum. Genet.

Avian genomes are growing with each new technology

Data from NCBI, accessed 13 Nov. 2021

Scrub Jay Pangenome Consortium

Colorado team - Island Scrub Jay Chris Funk Rebecca Cheek Paul Hohenlohe **Cameron Ghalambor**

Florida team - Florida Scrub Jay Harvard team - Woodhouse's Scrub Jay and Nancy Chen **Reed Bowman** John Fitzpatrick

Informatics **Tim Sackton Bohao Fang** George Kolyfetis **Danielle Khost** Heng Li

Pangenome informatics Erik Garrison Andrea Guarracino

Fieldwork Greg and Donna Schmitt

San Juan County, New Mexico

The Evolution of Comparative Phylogeography: Putting the Geography (and More) into Comparative Population Genomics

GBE

Scott V. Edwards (D^{1,2,*}, V. V. Robin³, Nuno Ferrand⁴, and Craig Moritz⁵

Table 1

Conceptual Relationships between the Fields of Comparative Population Genomics, Landscape Genomics, and Comparative Phylogeography

Concept/Parameter	Comparative Population Genomics	Landscape Genomics	Comparative Phylogeography
Comparative perspective	Growing	Nascent	Mature
Emphasis on space	No	Yes	Yes
Geographic scale	Random mating population	Region	Biome
Temporal scale	Arbitrary	Recent	Deep
Focus on:			
selection versus neutrality	Both	Both	Neutrality
recombination	Yes	Not yet considered	Not yet considered
geography versus environment	Nuisance parameters	Environment	Both
Future use of whole-genome sequencing	Yes	Likely	Unlikely
Growth out of museum collections community	No	No	Partial

Edwards et al. 2021. *Genome Biology and Evolution* 14: 10.1093/gbe/evab176

PacBio HiFi reads are long and accurate

- HiFi reads: long & accurate
- ► A breakthrough every ~5 years
- Most existing assemblers cannot make full use of the accuracy

Coutesy Haoyu Cheng, Dana Farber Cancer Institute

PacBio HiFi reads are long and accurate

HG002 GRCh38 chr15:43,599,422-43,619,001 (19 kb)

Hifiasm – a HiFi accurate read assembler that resolves haplotypes

Coutesy Haoyu Cheng, Dana Farber Cancer Institute

Scrub-jay PacBio HiFi data characteristics

60-fold range in effective population size across species

bpp

~2500 1-kb dipcall regions

PSMC

Li & Durbin. 2011. *Nature* 2011, 475:493-496; Flouri et al. 2020. *Mol. Biol. Evol.* 37: 1211-1223

RepeatMasker analysis suggests over 25% repeats and transposable elements

Assemblies of Island Scrub Jays are ~100 Mb smaller than Woodhouse's Scrub Jay

sum of contigs of primary assembly more management

Estimates of max genome size from Genomescope using k-mers

Interspecific variation in repeat content...

...and satellites

IQ-TREE v. 1.6.12, 3500 18-kb satellite sequences

Telomeres – barometers of age and stress in birds

RESEARCH | REPORTS

CHRONIC INFECTION

Hidden costs of infection: Chronic malaria accelerates telomere degradation and senescence in wild birds

https://medibalans.com/telomere/

Ashgar et al. 2015. Science 347:436-438

Telomere abundances influenced by population size

Species with smaller N_e are predicted to have shorter telomeres:

Brown et al. 2024. Genome Biol. Evol. evae111

Pangenome graphs capture structural variation within species

Eizenga et al. 2021. Ann. Rev. Genomics Hum. Genetics

Distribution of genome-wide structural variants

2D pangenome graph visualizations – PGGB/Odgi

Chr 18 – 12 Mb

Variation in depth of a pangenome graph

Graph depth of microchromosome 27 correlates with LTRs and satellites

Pangenome depth reveals chromosomal features

Indirect evidence for an interaction between selection and genetic drift for structural variants

Nearly neutral molecular evolution

Bromham and Penny. 2003. *Nature Reviews Genetics*

Population size and rate of molecular evolution

deleterious mutations

advantageous mutations

Lanfear et al. 2014. Trends in Ecology and Evolution

SVs are on average more deleterious than SNPs

Tomoko Ohta

Barton HJ, Zeng K: New Methods for Inferring the Distribution of Fitness Effects for INDELs and SNPs. Mol Biol Evol 2018, 35:1536-1546.

Longer SVs rise to higher frequencies in island population

Density of ~485,000 structural variants extracted from PGGB pangenome graph

Inversions are common and track population size

Numerous inversions identified by pangenome and reference-based methods

102 inversions identified by Syri and polarized with Steller's Jay

Inversions show enhanced differentiation between species

Abundant copy-number variants and gene deletions

Using miniprot and pangene Li et al. 2024. *Bioinformatics* Li, H. 2023. *Bioinformatics*

Abundant copy-number variants and gene deletions

Gene copy number variants exhibit a surprising pattern

Copy number variants have functional consequences

Population size influences diversity of structural variants in scrub-jays

Scrub-Jays (Aphelocoma)

Conclusions

- Scrub-jay genomes are repeat-rich
- Structural variants generally track population size
- Structural variants are estimated to be slightly deleterious
- Gene copy number variants look strongly deleterious
- Pangenome analysis will likely become the common standard