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Four major phylogenetic problems of eukaryogenesis

Plagued by artefacts from use of overly 

simplistic phylogenetic models

Mitochondrial

symbiosis

LECA

~1.6 Gya

Archaea Eukaryotes Proteobacteria

Archaeal ancestor

The timing of the mitochondrial symbiosis

?

?

The relationship of 

eukaryotes to Asgard Archaea

? The relationship of mitochondria 

to Alphaproteobacteria

?

The root of the eukaryote tree



1 - Protein models of evolution



1.1 Empirical models



Code degeneracy

GAA-GGA-AGC-TCC-TGG-TTA-CTC-CTG-GGA-TCC

GAG-GGT-TCC-AGC-TAT-CTA-TTA-ATT-GGT-AGC

GAC-GGC-AGT-GCA-TGG-TTG-CTT-TTG-GGC-AGT

GAT-GGG-TCA-GCT-TAC-CTC-CTG-GCC-GGG-TCA

Glu-Gly-Ser-Ser-Trp-Leu-Leu-Leu-Gly-Ser 

Glu-Gly-Ser-Ser-Tyr-Leu-Leu-Ile-Gly-Ser

Asp-Gly-Ser-Ala-Trp-Leu-Leu-Leu-Gly-Ser

Asp-Gly-Ser-Ala-Tyr-Leu-Leu-Ala-Gly-Ser 

Protein sequence evolves slower than nucleotide



• Base composition bias can lead to large difference in codon usage

• Comparing protein sequences can reduce the compositional bias 

problem

Code degeneracy



Evolutionary models for amino acid changes

Typically

• A 20x20 rate matrix 

• Assumes stationarity and reversibility



Amino acid physico-chemical properties

• AA can be categorized according to their physicochemical properties 

• Major factor in protein folding (secondary, tertiary, quaternary structure)

• Key to protein functions (e.g., catalytic sites)

➔ Major influence in pattern  of amino 
acid mutations

Some amino acid changes are more 
commonly fixed than others



Empirical models: amino acid substitution 
matrices based on observed substitutions

Summarise the substitution patterns from a large number of existing 

alignments (‘average’ models)



Empirical models: amino acid substitution 
matrices based on observed substitutions

Summarise the substitution patterns from a large number of existing 

alignments (‘average’ models)

seq.1 AIDESLIIASIATATI

      |*||*||*||*||*||

seq.2 AGDEALILASAATSTI

Raw data: observed changes in pairwise comparisons



A S T G I L E D

A 3 

S 2 1

T 0 0 1

G 0 0 0 0

I 1 0 0 1 2

L 0 0 0 0 1 1

E 0 0 0 0 0 0 1

D 0 0 0 0 0 0 1 0

seq.1 AIDESLIIASIATATI

      |*||*||*||*||*||

seq.2 AGEEALILASAATSTI

Raw matrix

Symmetrical

➔ The larger the dataset, the better the estimates



Amino acid exchange matrices

-    s1,2  s1,3  …  s1,20

s1,2   -    s2,3  …  s2,20                                                     

s1,3  s2,3   -    …  s3,20

 …     …     …    …    …   

s1,20 s2,20 s3,20 …    -

 

X diag(π1, …, π20) = Q matrix

Q           Rate matrix

sij          Exchangeabilities of amino acid pairs ij 

sij = sji  Time reversibility (usually)

πi           Stationarity of amino acid frequencies 

              (typically the observed proportion of residues in the dataset)



• Summarise the substitution patterns from a large number of existing 

alignments (‘average’ models)

• Different substitution matrices come from:

• Selection of specific proteins

• Globular proteins vs membrane proteins

• Mitochondrial proteins, viral proteins…

• Range of sequence similarities used

• Counting methods

• On a tree

• Pairwise comparison from an alignment

Empirical models



Empirical models

Dayhoff (Dayhoff et al., 1978): Nuclear encoded genes (~100 proteins) ➔ PAM matrices

JTT (Jones et al., 1992): 59,190 point mutations from 16,300 proteins from membrane 
   spanning segments

Mtrev24 (Adachi and Hasegawa, 1996) : Mitochondrial (vertebrates)

Mtmam (Yang et al., 1998): Mitochondrial (mammals)

mtART (Abascal et al., 2007): Mitochondrial (Arthropoda)

CpRev (Adachi et al., 2000): Chloroplast

VT (Müller and Vingron, 2000): General matrix

RtRev (Dimmic et al., 2002): Retrovirus

DayhoffDCMUT (Kosiol and Goldman, 2005): Revised Dayhoff matrix

WAG (Whelan and Goldman, 2001): General matrix

LG (Le and Gascuel, 2008): General matrix

Limitation: for less similar sequences, no linearity between 

observed and real substitution rate (hidden substitutions)



Empirical models

Dayhoff (Dayhoff et al., 1978): Nuclear encoded genes, ~100 proteins ➔ PAM matrices

JTT (Jones et al., 1992): 59,190 point mutations from 16,300 proteins from membrane 
   spanning segments

WAG (Whelan and Goldman, 2001): General matrix

LG (Le and Gascuel, 2008): General matrix

Mtrev24 (Adachi and Hasegawa, 1996) : Mitochondrial (vertebrates)

Mtmam (Yang et al., 1998): Mitochondrial (mammals)

mtART (Abascal et al., 2007): Mitochondrial (Arthropoda)

CpRev (Adachi et al., 2000): Chloroplast

VT (Müller and Vingron, 2000): General matrix

RtRev (Dimmic et al., 2002): Retrovirus

DayhoffDCMUT (Kosiol and Goldman, 2005): Revised Dayhoff matrix
(and more…)



The WAG matrix (2001)

• Globular protein sequences
• 3,905 sequences from 182 protein families

• Produced a phylogenetic trees for every family and used maximum 
likelihood to estimate the relative rate values in the rate matrix 
(i.e., maximizes the overall lnL over 182 different trees)

• Better fit of the model with most data (significant improvement of the tree lnL 
when compared to PAM or JTT matrices)

• Can be used for (more) distant homologues



Further improvements: the LG matrix (2008)

• Used the same phylogenetic approach as WAG

• Further refine the method by adding the variability of evolutionary 
rates across sites when estimating the matrix and increase the number 

of sequences used

• Better fit of the model with most data (significant improvement of the 
tree lnL when compared to WAG and other matrices)



Empirical models

Dayhoff (Dayhoff et al., 1978): Nuclear encoded genes, ~100 proteins ➔ PAM matrices

JTT (Jones et al., 1992): 59,190 point mutations from 16,300 proteins from membrane 
spanning segments

WAG (Whelan and Goldman, 2001): General matrix

LG (Le and Gascuel, 2008): General matrix

Mtrev24 (Adachi and Hasegawa, 1996) : Mitochondrial (vertebrates)

Mtmam (Yang et al., 1998): Mitochondrial (mammals)

mtART (Abascal et al., 2007): Mitochondrial (Arthropoda)

CpRev (Adachi et al., 2000): Chloroplast

VT (Müller and Vingron, 2000): General matrix

RtRev (Dimmic et al., 2002): Retrovirus

DayhoffDCMUT (Kosiol and Goldman, 2005): Revised Dayhoff matrix
(and more…)



Summary

• Many amino acid rate matrices exist 

• One should make a rational choice (as much as possible): 

• How was the rate matrix produced?

• What are the structural features of the sequences that you are analyzing? 
Globular/membrane protein? Overall level of sequence identity of the 
compared sequences? Specific compositional bias (mitochondrial proteins 
matrix: mtREV24; Transmembrane domains: PHAT)?

• ModelTest, ModelFinder (IQtree), ProtTest… to compare models



Rate heterogeneity parameter

• Not all sites “evolve” at the same speed depending on how it impacts 
function

Ef1-a



Rate heterogeneity parameter

• Discreticized Gamma distribution (+G)

• Default is usually 4 categories but can be set to be more (but more 
computationally intensive)



Rate heterogeneity parameter

• Discreticized Gamma distribution (+G)

• Default is usually 4 categories but can be set to be more (but more 
computationally intensive)

• FreeRate model (+R)

• Does not follow a parametric distribution

• Not all categories will have the same number of sites

• More realistic but more computationally intensive

• Typically fits data better than the +G model and is recommended for analysis 
of large data sets



1.2 Fully parameterized time-
reversible model



GTR (General time reversible)

• One can generate a dataset-specific model 

• All parameters of the Q matrix are estimated from your data 

(exchangeabilities and equilibrium frequencies)

• GTR20: General time reversible model for amino-acids: 189 rate 

parameters! 

*WARNING* Parameter-rich: parameter estimates might not be reliable if 

made on short alignments (not enough information)



1.3 Mixture models



Your model is giving you the probability of going from 
amino acid i to j at site x, evolving at rate rv on branch te

P( j | i ;t) = exp(Q´ te ´ rv )[ ]
ij

Human

Shiitake mushroomE. coli

Lactobacillus

i j

A
B
C
D
E
F

A
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F

Uniform rate model Rates-across-sites model

A
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D
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Punctuated 
rates-across-sites model
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For i≠j:



P( j | i ;t) = exp(Q´ te ´ rv )[ ]
ij

Human

Shiitake mushroomE. coli

Lactobacillus

i j
te
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For i≠j:

Assumptions

-different sites in protein and 

organisms all evolve according to 

the same general ‘rules’
- i.e. rate matrices (R’s) and 

frequencies (’s) are the same for 

all sites and branches

Your model is giving you the probability of going from 
amino acid i to j at site x, evolving at rate rv on branch te



The problem…

• Such models are a dramatic over-simplification of what is really going on

• Average over sites, average over different organisms, average across protein families 

• Sites in proteins can change function over time

• sites under negative selection         neutral        positive selection

• Every amino acid site in a protein has a unique structural/functional context

• Hydrophobicity, polarity, charge, size, functional group, etc.

• Different sites have different exchangeabilities 

• Different frequencies of AAs occur at different sites



Evolution of chaperonin 60 over ~1.5 billion years

Plants
Fungi

Animals

Protists

Bacteria

V or L D or E
R or K C, V or A



Distribution of the number of different amino acids at aligned sites
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HSP90 protein

Wang et al. (2008) BMC Evolutionary Biology 8: 331



Starting at a D with a site homogeneous matrix (LG+F)
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Long branch attraction

What happens to phylogenetic estimation when you ignore site-heterogeneity?

1

3

1 2

3 4

a a

b b b

As a gets large

and  a >> b 

Susko et al. (2004) Mol. Biol. Evol.

Lartillot and Philippe (2007) BMC Evol. Biol

Wang et al. (2008) BMC Evol. Biol. 

Roger and Susko (2021) Systematic Bio



Why long branch attraction (LBA)?

E

D D

E E

TRUE TREE LBA TREE

E E E

D

Under site homogeneous model (LG), the probability of converging on the same state 

(E → D) twice is pretty low:

➔ if branch-length a is really long, then P(convergence)LG ≈ D
2 = (0.057)2=0.0032

E → DE → D
E → D

a a



Why long branch attraction (LBA)?

E

D D

E E

TRUE TREE LBA TREE

E E E

D

Under site homogeneous model (LG), the probability of converging on the same state 

(E → D) twice is pretty low:

➔ if branch-length a is really long, then P(convergence)LG ≈ D
2 = (0.057)2=0.0032

Under a site-specific model where you can only be D or E (with equal frequency of 0.5):

➔ P(convergence)ss ≈ D
2 = (0.5)2 = 0.25

E → DE → D
E → D

a a



Mixture models

• Standard protein substitution models: single Q matrix 

• Mixture models: combine several amino-acid replacement matrices 

• Same principle as rate heterogeneity mixture models

• For each site, its likelihood is the sum of its weighted likelihood under each Q 
matrix that is are part of the mixture model

Weight of the 

rate class



Mixture models: terminology warning

• Different kinds of mixture models!

• Rate-category mixture model (see Dave’s lecture)

• Usually people refer to mixture of amino-acid replacement matrices 

• Mixtures can be apply to any part of the model (e.g., branch lengths)



LG4M and LG4X mixture models 

“the variability of evolutionary rates corresponds to one of the most 

apparent heterogeneity factors among sites, and there is no reason to 
assume that the substitution patterns remain identical regardless of 
the evolutionary rate” Le, Dang, Gascuel 2012

Standard LG+G model: 
only the global rate differs from one category to another



LG4M and LG4X mixture models 

LG4M: each gamma rate category gets its own Q matrix (i.e., each of the 4 gamma-distributed 
rate category gets it own amino acid equilibrium distributions and exchangeabilities)

A
B
C
D
E
F

A
B
C
D
E
F

Uniform rate model Rates-across-sites model

A
B
C
D
E
F

Punctuated 
rates-across-sites model

A
B
C
D
E
F

Covarion model

r1 r2 r1r3

   

P =

p A 0 0 0

0 p R 0 0

0 0 ... 0

0 0 0 p v

é 

ë 

ê 
ê 
ê 
ê 

ù 

û 

ú 
ú 
ú 
ú 

LG(M1)

   

P =

p A 0 0 0

0 p R 0 0

0 0 ... 0

0 0 0 p v

é 

ë 

ê 
ê 
ê 
ê 

ù 

û 

ú 
ú 
ú 
ú 

LG(M2)

   

P =

p A 0 0 0

0 p R 0 0

0 0 ... 0

0 0 0 p v

é 

ë 

ê 
ê 
ê 
ê 

ù 

û 

ú 
ú 
ú 
ú 

LG(M3)

   

P =

p A 0 0 0

0 p R 0 0

0 0 ... 0

0 0 0 p v

é 

ë 

ê 
ê 
ê 
ê 

ù 

û 

ú 
ú 
ú 
ú 

LG(M4)

25%

25% 25% 25%

r1 r2 r3 r1 r4 r1



LG4M and LG4X

LG4X: each rate category gets its own Q matrix BUT rates and weights 
are left out of the gamma distribution assumption
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The CAT model

• Bayesian framework only

• Free number of profiles in the mixture model (estimated during the 
Bayesian procedure). “Infinite mixture model”

• Each profile corresponds in practice to a biochemical profile: only a small 
number of AA are highly probably, while the frequency of all others will 

be ~0. 



The CAT model

• CAT-Poisson: very simple amino-acid replacement process (R matrix). 
Each time a substitution event occurs, a new amino-acid is chosen at 
random, according to the probabilities defined by the profile 

(Poisson or proportional amino-acid replacement process). 
Eg., any AA has the same probability to mutate to a Valine.

• CAT-GTR: GTR exchangeability matrix with 189 parameters!



C10, C20, …, C60 mixture models

• 10, 20, 30, 40, 50, 60-profile mixture models are approximations of 
the CAT model for ML

• 10 (20, 30…) different pre-computed (empirical) Q matrices that 
correspond to 10 (20, 30…) most-common types of biochemical 
profiles in proteins

• By default, assume Poisson AA replacement but can be combined with 
empirically estimated exchangeabilities, such as from the LG matrix. 
For example: LG+C10

qij = rij ´p j



Problem with mixture models

• As the number of sites and proteins increases the computational cost becomes prohibitive

• For an ML analysis of 104 taxa and ~90,000 sites (350 proteins concatenated) 
LG+C60+F+G model takes >350 GB of RAM and ~3 weeks on 12 cores to estimate 
the ML tree using IQTREE v. 1.5

• 5.5 years to do true bootstrap analysis

➔ PMSF (Posterior Mean Site Frequency) approximation: transforming a mixture model into 
a ‘simple’ model (Wang, Bui, Susko, Roger Systematic Biology 2018)



PMSF (Posterior Mean Site Frequency) model 
Implemented in IQtree

1) Reconstruct an ML tree under a “good” model = guide tree 

2) Using the guide tree, estimate, for each site x, the posterior probability of each 
amino-acid class c (e.g.: C1, C2, …, C60)

3) For each site x, estimate the posterior mean frequency of each amino acid j

Posterior probability of ‘class c’ at site x

Posterior mean frequency of amino 

acid j at site x over all c classes (fj,x)

Freq of AA j for class c Prob of class c at site x

Sum over all classes



Example: Posterior mean site frequency for ‘G’ at a given site x, 
  with a 4 class mixture model

Probability 

of each class 

at site x
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Frequency (fG) of amino acid G in each of 4 ‘site classes’  
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of each class 

at site x

Example: Posterior mean site frequency for ‘G’ at a given site x, 
  with a 4 class mixture model



E.g.: Posterior mean site frequency for ‘G’ at a given site x, with a 4 
class mixture model

Frequency (fG) of amino acid G in each of 4 ‘site classes’  

E[fG] = (0.1×0.1)+(0.35×0.35)+(0.6×0.45)+(0.85×0.1) = 0.5
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at site x



PMSF (Posterior Mean Site Frequency) model

1) Reconstruct an ML tree under a ‘reasonably good’ model

2) Using the ML tree, estimate, for each site x, the posterior probability of each 
amino-acid class c of your preferred mixture model (e.g.: C60)

3) For each site x, estimate the posterior mean frequency of each amino acid j

4) Now, every site x has its own 

Posterior probability of ‘class c’ at site x

Posterior mean frequency of amino acid j 

at site x over all c classes (f_j,x)
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PMSF (Posterior Mean Site Frequency) model

5) You estimate the ML tree using these pre-computed site-specific Q 
matrices: LG exchangeabilities + custom frequencies 

➔ Equivalent to LG+F, where F would be different for every site

➔ Barely more computationally intensive than using the ‘native’ LG matrix

➔ Bootstrapping is dramatically faster



Take home (for this part)

• Models are idealizations of the actual process of protein evolution 

• Model misspecification (e.g. single-matrix models) often means 

systematic error (LBA)

• Mixture models deal with site-specific heterogeneity but are 

computationally expensive

• PMSF models provide a viable alternative for bootstrap analyses



Other types of mixture models



Human

Shiitake mushroomE. coli

Lactobacillus

i j

Assumptions
-‘fast-evolving’ positions are always fast and 
slow-evolving positions are always slow

-Sites have the same rate of evolution (rv) on 
different branches of tree 

  

P( j | i ;t) = exp(R´ P ´ te ´ rv )[ ]
ij

A
B
C
D
E
F

A
B
C
D
E
F

Uniform rate model Rates-across-sites model

A
B
C
D
E
F

Punctuated 
rates-across-sites model

A
B
C
D
E
F

Covarion model

r1 r2 r1r3

Probability of going from amino acid i to j  
at site x, evolving at rate rv on branch te



Changing rates of evolution at sites in different 
parts of the tree of life (=heterotachy)

Archaea

EF-1

Eukaryotes

EF-1

slow

fast

slow

fast



Changing rates of evolution at sites in different 
parts of the tree of life (=heterotachy)



Models that deal with heterotachy 
(changing site rates across the tree)

• Covarion models (cf Joe’s lecture)

• Allow the sites “switch” between high rates and low rates over the tree

• Computationally intensive

• Rate-shift models

• Allows rates at many different sites to change abruptly on one branch

• Mixture of branch-length models

• Allows different branch-lengths for different sites (e.g. GHOST model in IQtree)



Functionally divergent sites generate 
heterotachy

Functional shifts (functional 
divergence)

• Type I: ‘rate-shifting’ sites (sites 
that are conserved in one 
phylogenetic sub-group but 
not another).

• Type II: conserved-but-
different’ (conservation within 
both sub-groups of a 
phylogenetic tree but for 
amino acids with differing 
physico-chemical properties).

Archaea
EF-1

Eukaryotes
EF-1

Type I Type II



Functionally divergent sites generate 
heterotachy

Functional shifts (functional 
divergence)

• Type I: ‘rate-shifting’ sites (sites 
that are conserved in one 
phylogenetic sub-group but 
not another).

• Type II: conserved-but-
different’ (conservation within 
both sub-groups of a 
phylogenetic tree but for 
amino acids with differing 
physico-chemical properties).

Archaea
EF-1

Eukaryotes
EF-1

Type I Type II

FD sites violate homogeneity assumption 

and artefactually increase branch-length

➔ LBA



Functionally divergent sites generate 
heterotachy

Functional shifts (functional 
divergence)

• Type I: ‘rate-shifting’ sites (sites 
that are conserved in one 
phylogenetic sub-group but 
not another).

• Type II: conserved-but-
different’ (conservation within 
both sub-groups of a 
phylogenetic tree but for 
amino acids with differing 
physico-chemical properties).

Archaea
EF-1

Eukaryotes
EF-1

Type I Type II

FD sites violate homogeneity assumption 

and artefactually increase branch-length

➔ LBA

FunDi : identifies FD sites along a specific branch taking into account the phylogeny 

(ML framework) 



• For each site, FunDi allows for FD and non-FD evolution across a pre-specified split:

FunDi mixture model

Independent across split (=FD) Dependent across split (=non-FD) 

Gaston, Susko and Roger (2011)



0.3

1.09
Euk

0.2

0.5
-54%

- ‘FD sites’

• LBA

• Molecular clock



Break



PART 2 
Real examples of ‘deep’ phylogenetic 
problems and how we tried to address them



Single gene trees are not enough to resolve 
‘ancient relationships’

Observed substitutions

Real subsitutions

“Ancient” signal erased by more recent substitutions



Supermatrices

Combine weak phylogenetic (historical) signal from many genes

Attenuate individual bias (IF RANDOM) 

Tax1
Tax2
Tax4

Tax1

Tax3
Tax2

Tax4

CHECK FOR CONGRUENCE

Tax1
Tax2

Tax1

Tax4
Tax2



What can affect your topology

• Taxon sampling
• Long branching taxa

• Taxa with compositional bias
• Contaminated data

• Gene/site sampling
• Heterotachy
• Saturated sites

• Model misspecification
• LBA

• Highways of HGT
• Consistently conflicting with vertical signal

• (many other things…)



Example 1: Effect of model 
misspecification and of fast-
evolving sites



Model mispecification: statistical inconsistency 

Long Branch Attraction (LBA) Artefact

True Tree

Adding more data strengthens artefact 

→ statistical inconsistency

Inferred tree (when 

model mis-specified)

Long 

branches

artificially

cluster 

together
LBA



Tree of eukaryotes



Pygsuia biforma (Brown,…Roger 2013)

10µm 2µm10µmHeiss

Food 
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Nucleus
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Two different topologies within Obazoa
are supported by different phylogenetic models

Opisthokonts

Breviates

Apusomonads

Amoebozoa

Opisto + Breviates + Apusomonads = OBAzoa



ML – LG+

Bayes  – LG+

Opisthokonts

Breviates

Apusomonads

Amoebozoa

Opisthokonts

Breviates

Apusomonads

Amoebozoa

Bayes – CAT-Poisson+ 

Bayes  – CAT-GTR+

ML-BS = 98% Bayes posterior prob. = 1.0

Two different topologies within Obazoa
are supported by different phylogenetic models



How to decide which is real and which is 
artefact?

• One of two topologies is likely artefactual resulting from mis-specified 
model 

• Test which substitution model fits better

• E.g., Cross-validation, Bayes factors, Posterior prediction

• Try to eliminate ‘noisiest’ data

• Fast-evolving site removal

• Fast-evolving gene removal → result



How to decide which is real and which is 
artefact?

• Try to eliminate ‘noisiest’ data

• Fast-evolving site removal

• Fast-evolving gene removal → result

Cross-validation: 

1) parameters of the model estimated on the learning set 

2) these parameter values are then used to compute the likelihood of the test set = 

how well the test set is 'predicted' by the model?

3) Repeat over all partitions and average the likelihood

4) Repeat for each model and compare



Cross-validation favors CAT-GTR over LG

ML – LG+

Bayes  – LG+

Bayes – CAT-Poisson+ 

Bayes  – CAT-GTR+

ML-BS = 98%

Opisthokonts

Breviates

Apusomonads

Amoebozoa

Opisthokonts

Breviates

Apusomonads

Amoebozoa

Bayes posterior prob. = 1.0

ML – LG+

Bayes  – LG+

Bayes – CAT-Poisson+ 

Bayes  – CAT-GTR+

Cross validation



How do decide which is real and which is 
artefact?

• One of two topologies is likely artefactual resulting from  
misspecified model 

• Test which substitution model fits better

• Cross-validation

• Try to eliminate ‘noisiest’ data

• Fast-evolving site removal

• Fast-evolving gene removal

• Fast-evolving taxon removal

• Recoding



Removal of fast-evolving sites

Goal: can we yield the same topology 

under LG+G as under CAT+GTR 

after we remove poorly modelled sites?



Fast Evolving Sites removal

Fast-evolving sites : carry the ‘noisiest’ signal (most saturated sites)

Tax1
Tax2
Tax3
Tax4

Initial alignment

Tax1
Tax2
Tax3
Tax4

Tax1
Tax2
Tax3
Tax4

Iteration 1

Step # sites left

1 43615

2 42615

…

4 40615

…

40 3615

➔ 40 steps of removal of 1000 

sites (evolutionary rates estimated by 

IQTREE for example)

Reconstruct tree

Tree1

Tree 2

Tree 4

Tree 40



Estimate support for conflictual clades as we remove Fast-
Evolving Sites (under LG+G)

Brown et al. 2013 PRSB

(CAT-GTR favored 

topology)



Estimate support for conflictual clades as we remove Fast-
Evolving Sites (under LG+G)

Brown et al. 2013 PRSB

(CAT-GTR favored 

topology)



Brown et al. 2013 PRSB

Check loss of 

support for 

uncontroversial 

clades

Estimate support for conflictual clades as we remove Fast-
Evolving Sites (under LG+G)



Breviates+Apusomonads (B+A) topology vs. Apusomonads+Opisthokonts (O+A)

Opisthokonts

Breviates

Apusomonads

Amoebozoa

Opisthokonts

Breviates

Apusomonads

Amoebozoa





Removal of 18,000 fastest-evolving sites

Opisthokonts

Breviates

Apusomonads

Amoebozoa

Opisthokonts

Breviates

Apusomonads

Amoebozoa

ML – LG+

ML – LG+



Fast-evolving site removal: warning

• Poor proxy for heterotacheous site removal

• Fast sites in themselves are not necessarily a problem if they are fast across the 
entire tree

• In practice, fast sites seem to overlap to some extant with sites whose 

rate varies across the tree and are improperly modelled by most 
widely used models.

• You also remove the most saturated sites, which are usually poorly 
modelled



Example 2: Effect of amino-acid 
preference change over the tree



A brief account of the little we know about the origin of eukaryotes







The chimeric nature of eukaryotes

Complex cell features 

(organelles, 

endomembrane system,…)

Eukarya
specific



The chimeric nature of eukaryotes

Replication

Transcription

Translation

Archaea
-like

Complex cell features 

(organelles, 

endomembrane system,…)

Eukarya
specific

Ester-link fatty acid 

membrane phospholipids

Energy and carbon metabolism

Bacteria
-like



Eukaryotic lipids resemble bacterial ones

Lombard et al, 2012

Archaea

phospholipids 

Bacteria and 

Eukaryotes

phospholipids



Mitochondria have diverse and crucial metabolic roles 
for the eukaryotic cell



The notion that eukaryotes are chimeric in nature is not new

•  Endosymbiont theory: Mitochondria and 
chloroplasts were once free-living bacteria

•  First proposed by Altmann (1890) and 
Mereschkowsky (1905), developed into modern 
form by Lynn Margulis

Lynn Margulis 
(1938-2011)



The notion that eukaryotes are chimeric in nature is not new

•  Endosymbiont theory: Mitochondria and 
chloroplasts were once free-living bacteria

•  First proposed by Altmann (1890) and 
Mereschkowsky (1905), developed into modern 
form by Lynn Margulis

Lynn Margulis 
(1938-2011)

Bacteria

Bacteria



Hyperabundant 

marine plankton

Thrash et al. 2011

Obligate intracellular 

parasites and symbionts

Wang and Wu (2014),

Fan et al. (2020) 

Martijn et al. 2018

Controversy over position of mitochondria within Alphaproteobacteria



• More markers:

108 proteins of mitochondrial 

origin

• More taxa:

150 non-marine 

alphaproteobacterial MAGs 

(microbial mats, microbialites and 

lake sediments)

• New model:

GFmix phylogenetic model

Muñoz-Gómez, Susko, Williamson, Eme, … Roger (2022) Nat. Ecol. Evol.



mitochondria

Pelagibacterales

Rickettsiales

Holosporales

Other alphaproteobacteria

The proteome AA composition varies with the genomic GC content 



Edward Susko

Muñoz-Gómez et al. (2022) Nat. Ecol. Evol.

For each branch assume there’s a specific ratio of frequencies of GARP:FYMINK 
• call this the ‘b’ parameter

Then for the tree we have:

GFmix modifies the site profile mixture classes for each branch based on the b parameter

𝑏𝑥 =
𝑓𝐺,𝐴,𝑅,𝑃

𝑓𝐹,𝐼,𝑀,𝑁,𝐾,𝑌

b1

b2

b3

b4

b5

b6

b7

b8

A site-and-branch-heterogeneous profile mixture model GFmix



A site-and-branch-heterogeneous profile mixture model GFmix

Edward Susko

Muñoz-Gómez et al. (2022) Nat. Ecol. Evol.

𝑓𝐺,𝐴,𝑅,𝑃
𝑓𝐹,𝐼,𝑀,𝑁,𝐾,𝑌

= 𝑏 ≪ 1



The GFmix model supports the ancestry of mitochondria from 
outside known diversity of alphaproteobacteria

Alphaproteobacteria

Munoz-Gomez et al., Nature Ecol Evol 2022



The chimeric nature of eukaryotes

Replication

Transcription

Translation

Archaea
-like

Complex cell features 

(organelles, 

endomembrane system,…)

Eukarya
specific

Ester-link fatty acid 

membrane phospholipids

Energy and carbon metabolism

Bacteria
-like



Transmission and expression of genetic information show a higher 
similarity between eukaryotes and Archaea than with Bacteria

Subunit composition of the RNAPs

Overall architecture of RNA polymerases (RNAPs) 

Bacteria Archaea Eukaryotes

Informational systems  suggest an archaeal connection 



Two domain 

tree of Life
Three domain 

tree of Life

1990s-2000s: Phylogenetic analyses: few (informational) genes; few cultivated organisms 

ARCHAEA
ARCHAEA

ARCHAEA

Eme et al. 2017, Nat Rev Micro. 

Archaea as sister-group or as ancestors of eukaryotes?



Culture-independent genomics (e.g. metagenomics)



Spang et al. 2015, Nature



The unveiling of Asgard archaea through metagenomics

Spang 2015, Nature

Zaremba 2017, Nature



2017

ARCHAEA

ARCHAEA

Spang 2015, Nature

Zaremba 2017, Nature

Eme et al. 2017, Nat Rev Micro. 

The unveiling of Asgard archaea through metagenomics



Ribosomal
proteins

Informational
processing

Trafficking 
machinery

Cytosk.

Older Younger

Ub
system

Timing of emergence

Numerous Eukaryotic Signature Proteins (ESPs) 
in Asgard archaea

Eme et al. 2017, Nat Rev Micro. 



Ribosomal
proteins

Informational
processing

Trafficking 
machinery

Cytosk.
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system
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EUKARYA

Loki
Odin
Thor
Heim

Verstre
Cren
Kor
Bathy
Aig
Thaum
EURY

A
SG

A
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D
TA

C
K

Eme et al. 2017, Nat Rev Micro. 

Numerous Eukaryotic Signature Proteins (ESPs) 
in Asgard archaea



Ribosomal
proteins

Informational
processing

Trafficking 
machinery

Cytosk.
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system

Timing of emergence

EUKARYA

Loki
Odin
Thor
Heim

Verstre
Cren
Kor
Bathy
Aig
Thaum
EURY

A
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A
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C
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Eme et al. 2017, Nat Rev Micro. 

Numerous Eukaryotic Signature Proteins (ESPs) 
in Asgard archaea



Eme et al., Nature 2023



69 new Asgard genomes



Freyarchaeote_GBS02

Freyarchaeote_GBS03

Freyarchaeote_GBS04

Freyarchaeote_GBS05

Freyarchaeote_GBS06

Freyarchaeote_GBS07

Freyarchaeote_JZB50

Freyarchaeote_QC4B49

Freyarchaeote_QZMA23B3

Freyarchaeote_QZMA2B5

Freyarchaeote_QZMA3B5

Freyarchaeote_RPD1

Freyarchaeote_RPF2

Heimdallarchaeote_ABR14

Heimdallarchaeote_ABR16

Heimdallarchaeote_AB_125

Heimdallarchaeote_B3_JM_08

Heimdallarchaeote_GBS08

Heimdallarchaeote_GBS09

Heimdallarchaeote_GBS10

Heimdallarchaeote_GBS11

Heimdallarchaeote_LC_2

Heimdallarchaeote_LC_3

Heimdallarchaeote_RS678

Heimdallarchaeote_WORE3

Helarchaeote_HELGBA

Helarchaeote_HELGBB

Idunnarchaeote_A173

Idunnarchaeote_A3132

Idunnarchaeote_GBS15

Idunnarchaeote_GBS16

Idunnarchaeote_GBS17

Idunnarchaeote_GBS18

Idunnarchaeote_GBS19

Idunnarchaeote_GBS20

Idunnarchaeote_GBS21

Idunnarchaeote_GBS22

Idunnarchaeote_GBS23

Idunnarchaeote_GBS24

Idunnarchaeote_GBS25

Idunnarchaeote_GBS26

Idunnarchaeote_GBS27

Idunnarchaeote_M288

Lokiarchaeote_ABR01

Lokiarchaeote_ABR02

Lokiarchaeote_ABR03

Lokiarchaeote_ABR04

Lokiarchaeote_ABR05

Lokiarchaeote_ABR06

Lokiarchaeote_ABR08

Lokiarchaeote_ABR11

Lokiarchaeote_ABR13

Lokiarchaeote_ABR15

Lokiarchaeote_CR_4

Lokiarchaeote_GBS14

Lokiarchaeote_GC14_75

Lokiarchaeote_WORB4

Lokiarchaeote_WORC5

Odinarchaeote_LCB_4

Odinarchaeote_RPA3

Freyarchaeote_GBS01

Thorarchaeote_A361

Thorarchaeote_A381

Thorarchaeote_A399

Thorarchaeote_ABR09

Thorarchaeote_ABR10

Thorarchaeote_AB_25

Thorarchaeote_GBS28

Thorarchaeote_GBS29

Thorarchaeote_GBS30

Thorarchaeote_GBS31

Thorarchaeote_GBS32

Thorarchaeote_GBS33

Thorarchaeote_GBS34

Thorarchaeote_SMTZ1_45

Thorarchaeote_SMTZ_45

Thorarchaeote_SMTZ_83

Thorarchaeote_WORH6

Archaeon_WORA1

Archaeon_WORB2

2718217642

2718217643

2718217644

2718217646

Candidatus_Caldiarchaeum_subterraneum__GCA_000270325_1

2718217668

2718217670

2718217671

Candidatus_Bathyarchaeota_archaeon_B24__GCA_001593865_1

Candidatus_Bathyarchaeota_archaeon_B26_2__GCA_001593935_1

Candidatus_Bathyarchaeota_archaeon_BA2__GCA_001399795_1

Candidatus_Bathyarchaeota_archaeon_JdFR_11__GCA_002011035_1

Candidatus_Bathyarchaeota_archaeon_RBG_13_38_9__GCA_001775955_1

Candidatus_Bathyarchaeota_archaeon_RBG_16_48_13__GCA_001775995_1

Crenarchaeota_archaeon_13_1_40CM_3_52_17__GCA_001918745_1

miscellaneous_Crenarchaeota_group_6_archaeon_AD8_1__GCA_001273385_1

2524023237

2660238001

2681813019

2718217655

2718217666

2718217667

Acidianus_manzaensis__GCA_002116695_1

Acidilobus_saccharovorans_345_15__GCA_000144915_1

Aeropyrum_camini_SY1_JCM_12091__GCA_000591035_1

Caldisphaera_lagunensis_DSM_15908__GCA_000317795_1

Caldivirga_maquilingensis_IC_167__GCA_000018305_1

Desulfurococcus_amylolyticus_1221n__GCA_000020905_1

Fervidicoccus_fontis_Kam940__GCA_000258425_1

Ignicoccus_hospitalis_KIN4_I__GCA_000017945_1

Ignisphaera_aggregans_DSM_17230__GCA_000145985_1

Metallosphaera_cuprina_Ar_4__GCA_000204925_1

Pyrobaculum_arsenaticum_DSM_13514__GCA_000016385_1

Pyrodictium_delaneyi__GCA_001412615_1

Staphylothermus_hellenicus_DSM_12710__GCA_000092465_1

Sulfolobales_archaeon_AZ1__GCA_000565255_1

Sulfolobales_archaeon_Acd1__GCA_000389735_1

Sulfolobus_solfataricus_98_2__GCA_000024745_1

Thermofilum_uzonense__GCA_000993805_1

Thermogladius_calderae_1633__GCA_000264495_1

Thermoproteus_tenax_Kra_1__GCA_000253055_1

UBA166

Vulcanisaeta_moutnovskia_768_28__GCA_000190315_1

2504756013

Crenarchaeota_archaeon_SCGC_AAA471_B05__GCA_000380705_1

Candidatus_Korarchaeum_cryptofilum_OPF8__GCA_000019605_1

Korarchaeote_GBS35

Korarchaeote_GBS36

Korarchaeote_GBS37

Korarchaeote_GBS38

Korarchaeote_GBS39

Korarchaeote_GBS40

Korarchaeote_GBS41

Korarchaeote_GBS42

Korarchaeote_GBS43

Korarchaeote_GBS44

Korarchaeote_LHC

Korarchaeote_kor1

Korarchaeote_kor2

Korarchaeote_kor3

Korarchaeote_kor4

2263082000

2558309099

Candidatus_Nitrocosmicus_oleophilus__GCA_000802205_2

Candidatus_Nitrosopelagicus_brevis__GCA_000812185_1

Candidatus_Nitrosotalea_devanaterra__GCA_900065925_1

Cenarchaeum_symbiosum_A__GCA_000200715_1

Nitrosopumilus_maritimus_SCM1__GCA_000018465_1
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TOBG_SAT_137

Thaumarchaeota_archaeon_N4__GCA_000723185_1

Thaumarchaeota_archaeon_SCGC_AAA007_O23__GCA_000402075_1
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Hadesarchaea_archaeon_YNP_45__GCA_001515205_2

Haloferax_volcanii_DS2__GCA_000025685_1

Thermoplasmatales_archaeon_SM1_50__GCA_001595945_1

Methanobacterium_formicicum__GCA_000762265_1

Methanobrevibacter_smithii_ATCC_35061__GCA_000016525_1

Methanothermus_fervidus_DSM_2088__GCA_000166095_1
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Methanocorpusculum_labreanum_Z__GCA_000015765_1

Methanoculleus_marisnigri_JR1__GCA_000015825_1

Methanoregula_boonei_6A8__GCA_000017625_1

Methanopyrus_kandleri_AV19__GCA_000007185_1

2518645528

Methanosaeta_harundinacea_6Ac__GCA_000235565_1

Methanosalsum_zhilinae_DSM_4017__GCA_000217995_1

Methanosarcina_barkeri_str_Fusaro__GCA_000195895_1

Methermicoccus_shengliensis_DSM_18856__GCF_000711905_1

Marine_Group_III_euryarchaeote_CG_Epi1__GCA_001875345_1

UBA102

Candidatus_Syntrophoarchaeum_caldar ius__GCA_001766815_1

2651870038

TARA_MED_MAG_00075
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Candidatus_Micrarchaeota_archaeon_CG1_02_51_15__GCA_001871495_1
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Candidatus_Pacearchaeota_archaeon_CG1_02_31_27__GCA_001872145_1
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archaeon_CG2_30_31_98__GCA_001872885_1
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TOBG_ARS_1199

TOBG_ARS_1203

TOBG_ARS_1419
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Asgard genomes are substantially larger than most archaea



69 new Asgard MAGs

Phylogeny from a 15 ribosomal protein contig reveals new Asgard clades



New markers: 
      Conserved in eukaryote and archaea
      Not transferred horizontally

Cellular processes 
and signalling

Information 
storage and 
processing

Metabolism

Poorly 
characterized

57 new 
markers

Ribosomal proteins:
Slow evolving 
Universal
Coevolve
Short

54 ribosomal proteins

~6000 aa ~14,000 aa

How do Eukaryotes relate to Asgards?
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How do Eukaryotes relate to Asgards?

Ribosomal proteins New markers

Euryarchaea

Heimdall
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Other Asgards
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ASGARD

TACK
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Ribosomal proteins (RP)

How do Eukaryotes relate to Asgards?

New markers (NM) 



Dataset

 Ribosomal proteins

 New markers

Software

 IQ-Tree (LG+G4+C60+F+PMSF)

 Phylobayes (CAT+LG+G4)

Taxon sampling

 +/- DPANN

 +/- Eukaryotes

 +/- Korarchaea

Fast-evolving site removal (FSR) 

Recoding (SR4)

Ribosomal proteins (RP)

How do Eukaryotes relate to Asgards?

~800 phylogenies…

New markers (NM) 



PCA based on aminoacid composition

NM

Njord

Heimdall

Kor



PCA based on aminoacid composition

RP NM
Njord

Njord

Heimdall

Heimdall
Kor

Kor



PCA based on aminoacid composition

RP NM
Njord

Njord

Heimdall

Heimdall
Kor

Kor

Njord and Kor hyperthermophiles: 
➔ rRNA composition bias
➔ structural constraints in the ribosome 
explaining convergent AA composition

➔ Small systematic bias leads to large artefacts in concatenations





Dataset

 Ribosomal proteins

 New markers

Software

 IQ-Tree (LG+G4+C60+F+PMSF)

 Phylobayes (CAT+LG+G4)

Taxon sampling

 +/- DPANN

 +/- Eukaryotes

 +/- Korarchaea

Fast-evolving site removal (FSR) 

Recoding (SR4)

Ribosomal proteins (RP)

How do Eukaryotes relate to Asgards?

~800 phylogenies…

New markers (NM) 

RP (without Korarchaea)



Njord are in fact a sub-clade of Heimdallarchaeia

Hod

Njord

Other Heimdall

Other Asgards



Why do we care, again?

Ribosomal proteins New markers

Euryarchaea

Heimdall

Eukaryotes

Other Asgards

Crenarchaea

Aigararchaea

Thaumarchaea

Korarchaea

DPANN

Njord

Euryarchaea

Heimdall

Eukaryotes

Other Asgards

Crenarchaea

Aigararchaea

Thaumarchaea

Korarchaea

DPANN

Njord



Placing Eukaryotes in the Asgard tree require careful phylogenetic investigations

Untreated Fast Site Removal Recoding FSR+Recoding

Hod

Njord

Other Heimdall

Eukaryotes

Hod

Njord

Other Heimdall

Eukaryotes

Hod

Njord

Other Heimdall

Eukaryotes

Eukaryotes
BI

ML

Hod

Njord

Other Heimdall

Eukaryotes



Untreated Fast Site Removal Recoding FSR+Recoding

Hod

Njord

Other Heimdall

Eukaryotes

Hod

Njord

Other Heimdall

Eukaryotes

Hod

Njord

Other Heimdall

Eukaryotes

Eukaryotes
BI

ML

Hod

Njord

Other Heimdall

EukaryotesTaxon 1

Taxon 2

Taxon 3

Taxon 4

Placing Eukaryotes in the Asgard tree require careful phylogenetic investigations



Untreated Fast Site Removal Recoding FSR+Recoding

Hod

Njord

Other Heimdall

Eukaryotes

Hod

Njord

Other Heimdall

Eukaryotes

Hod

Njord

Other Heimdall

Eukaryotes

Eukaryotes
BI

ML

Hod

Njord

Other Heimdall

Eukaryotes

Placing Eukaryotes in the Asgard tree require careful phylogenetic investigations

E.g.: SR4 recoding (Susko and Roger 2007)



Untreated Fast Site Removal Recoding FSR+Recoding

Hod

Njord

Other Heimdall

Eukaryotes

Hod

Njord

Other Heimdall

Eukaryotes

Hod

Njord

Other Heimdall

Eukaryotes

Eukaryotes
BI

ML

Hod

Njord

Other Heimdall

Eukaryotes

Placing Eukaryotes in the Asgard tree require careful phylogenetic investigations



New ESPs support the relationship of Eukaryotes and Hod



New ESPs involved in complex intracellular trafficking



Rodrigues-Oliveira, T., Wollweber, F., Ponce-Toledo, R.I. et 
al. Actin cytoskeleton and complex cell architecture in an Asgard 
archaeon. Nature 613, 332–339 (2023).

Asgard archaea have an actin-based cytoskeleton

Charles-Orszag A, Petek-Seoane NA, Mullins RD. 2024. Archaeal 
actins and the origin of a multi-functional cytoskeleton. J Bacteriol



Example 3
Rooting the tree of eukaryotes

Williamson, Eme, et al. Nature, 2025



Modified from Burki et al., 2020



Gene tree parsimony, gene fusions and domain evolution, molecular and cellular 

features, replacement of highly conserved amino acids…

PROBLEMS: 

Convergence/reversion, lack of evolutionary models, no tests 

for robustness, no consensus,

sensitive to missing data and incomplete taxonomic sampling



OUTGROUP ROOTING

The evolutionary relationship of eukaryotes with archaea and 

alphaproteobacteria make them possible outgroups

Shorter branch length between alpha and eukaryotes

Acquisition of the 

mitochondrial 

endosymbiont
First Eukaryotic Common 

Ancestor (FECA)

Last Eukaryotic Common 

Ancestor (LECA)

Outgroups are lineages that fall outside of the group being studied, but are closely related enough to 

retain phylogenetic signal through orthologous genes

OUTGROUP

= ROOT OF TREE/LECA

Modified from Roger et 

al., 2017



x5

93 marker genes

63 eukaryotes

37 alphaproteobacteria 

FINAL DATASETS

Kelsey Williamson

Laura Eme

Sergio 

Muñoz-Gómez

Retrieve homologs  from 

selected eukaryotes and 

prokaryotes

Identify proteins of 

alphaproteobacterial origin in 

a small set of eukaryotes



Metamonads are problematic taxa 
for datasets of mitochondrial proteins

Metamonada consists entirely of anaerobes: 

lack a mitochondrial genome; 

have highly reduced mitochondrion-related organelles 

➔ lack most of the proteins in the dataset

Metamonads with the most mitochondrial proteins were included:

Anaeramoeba ignava – 13 genes, 19% site occupancy

Anaeramoeba flamelloides – 11 genes, 16.5% site occupancy

Datasets with and without metamonads were generated: 

Anae+ and Anae-

Anaeramoeba fused glass dish

Jane Hartman



TESTING THE POSITION OF THE ROOT

1. Estimate rooted phylogeny with site-heterogenous models

2. Create alternate root positions to evaluate likelihood differences between previously 
proposed roots and the optimal root estimated here

3. Evaluate all root positions under additional complex evolutionary models that account for 
different phenomena



SITE-HETEROGENEOUS MODELS 

Site heterogeneous models account for the 
fact that different sites evolve under different 
evolutionary constraints.

C-series models (E.g. C60)

UDM models (E.g. UDM64)
Set of amino acid frequency classes generated from 
public protein databases



SITE-HETEROGENEOUS MODELS 

MEOW (MAMMaL Extension On Whole 
alignment)
▪ Amino acid frequency classes are estimated 

directly from the data

▪ Can use different proportions of high- versus low-
rate sites to generate custom site classes

CAT-PMSF
▪ Generates set of site-specific amino acid 

frequencies

▪ Phylobayes is run on a fixed guide tree (ex. LG+G) 
to estimate frequencies

Hector 

Baños

Andrew

Roger

Ed 

Susko



All models recover a root separating eukaryotes into ‘Opimoda+’ and 
‘Diphoda+’

OUTGROUP

OPIMODA+

DIPHODA+

LG+MEOW80

(best fitting model based 

on cross-validation)



All models recover a root separating eukaryotes into ‘Opimoda+’ and 
‘Diphoda+’

Archaeplastida

Cryptista

Haptophyta

SAR

Discoba

Obazoa

CRuMs

Anaeramoebae*

Ancyromonadida

Amoebozoa

Malawimonadida

Alphaproteobacteria

Hemimastigophora

Centrohelida

Telonemia

Meteora

Ancoracysta

= ROOT

ANAE+: 94.9/87

ANAE-:  93/91

ANAE+: 99.9/55

ANAE-: 98.7/97

D

I

P

H

O

D

A

+

O

P

I

M

O

D

A

+

MEOW80 (aLRT/UFBOOT):



TESTING ALTERNATE ROOT POSITIONS

Alternative root topologies were generated by setting monophyly constraints 
in IQ-TREE 

Additional roots tested:

1. METAMONADA (ANAERAMOEBAE)

2. DISCOBA

3. OPISTHOKONTA

4. MALAWIMONADA

5. JAKOBIDA

6. EUGLENOZOA

7. ARCHAEPLASTIDA

= ROOT OF TREE/LECA

ARCHAEPLASTIDA

ALL OTHER
EUKARYOTES



models functional divergence (change of amino acid preference) at sites 

across a known branch (ie, the branch between alpha and euka)

models heterotachy (changing rate of evolution at sites across the tree)

accommodates amino acid compositional biases driven by changing GC 

content across the tree

FUNDI  –

INCLUDING ADDITIONAL COMPLEXITY TO THE PHYLOGENETIC 
MODELS

GHOST  – 

GF-MIX  –



TOPOLOGY MEOW80 MEOW80+FUNDI MEOW80+GHOST MEOW80+GF-MIX

OPIMODA+ -1665043.854 -1657618.898 -1650367.99 -1655099.392

ANAERAMOEBA -1665044.498 -1657619.576 -1650369.352 -1655103.092

DISCOBA -1665061.809 -1657635.485 -1650394.794 -1655134.492

MALAWIMONADIDA -1665095.632 -1657650.686 -1650414.421 -1655148.935

OPISTHOKONTA -1665138.368 -1657687.757 -1650454.564 -1655204.365

EUGLENOZOA -1665146.579 -1657718.133 -1650475.147 -1655210.287

ARCHAEPLASTIDA -1665170.708 -1657713.761 -1650467.552 -1655221.351

JAKOBIDA -1665205.285 -1657772.885 -1650538.914 -1655281.622

ANAE+ DATASET

Likelihoods improve under more complex models, but order of root preference remains consistent. 

Neither an Opimoda+ root or an Anaeramoeba root are rejected by topology testing.



The position of Anaeramoeba, the only representative of Metamonada, is not well-resolved

ANAERAMOEBA

Archaeplastida
Cryptista
Haptophyta
SAR
Discoba

Obazoa
CRuMs
Ancyromonadida
Amoebozoa

Malawimonadida

Alphaproteobacteria

Hemimastigophora
Centrohelida
Telonemia
Meteora
Ancoracysta

Archaeplastida
Cryptista
Haptophyta
SAR
Discoba

Obazoa
CRuMs
ANAERAMOEBA
Ancyromonadida
Amoebozoa

Malawimonadida

Alphaproteobacteria

Hemimastigophora
Centrohelida
Telonemia
Meteora
Ancoracysta

o ANAEROBES – NO MITOCHONDRIAL GENOME

o SITE OCCUPANCY OF 18%

o LONG-BRANCHING

= ROOT



A

B

C

D

A

B

C

D

TRUE TREE LBA TREE

Simulation studies support an artefactual attraction of Anaeramoeba to the long 

branch connecting the outgroup

LONG BRANCH ATTRACTION (LBA)

Under model misspecification or small sample bias, long branches artefactually branch together



A B

C D

A

B

C

D

A B

C D

A B

CD

TRUE TREE

TREE 1 TREE 2 TREE 3

ALL TOPOLOGIES EQUALLY LIKELY



A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

TRUE TREE

TREE 1 TREE 2 TREE 3

UNDER MODEL MISSPECIFICATION OR SMALL SAMPLE BIAS, LBA TREE IS PREFERRED



TESTING FOR LONG BRANCH ATTRACTION

1. Create a consensus tree from two competing topologies

A B C D E A B CD E

A B C D E

VS.

CONSENSUS:



1. Create a consensus tree from two competing topologies – consider this the ‘true’ topology

2. Simulate 100 alignments based on the consensus tree and CAT-PMSF site profiles (ALISIM)

3. Run IQ-TREE on all alignments to calculate the likelihood for both resolved topologies 
(Opimoda-like and Anaeramoeba) given the following models:

1. CAT-PMSF

2. MEOW

3. LG+G

If there is no LBA, there should be no preference for one topology over the other (ie. Both 
topologies are equally likely to have the better likelihood in a given replicate)

If there is LBA, there will be a bias toward the Anaeramoeba root topology under model 
misspecification (ie. Anaeramoeba topology will have better likelihood)

TESTING FOR LONG BRANCH ATTRACTION



As model misspecification increases, preference for an Anaeramoeba 
root over an Opimoda+ root also increases 



A

B

C

D

A

B

C

D

TRUE TREE LBA TREE

Simulation studies support an artefactual attraction of Anaeramoeba to the long 

branch connecting the outgroup

LONG BRANCH ATTRACTION (LBA)

Under model misspecification or small sample bias, long branches artefactually branch together

➔ Anaeramoeba is sensitive to LBA – not enough information to 

place them confidently in the tree



Removing the fastest-evolving sites, genes, and taxa



REMOVAL OF FASTEST EVOLVING SITES

Williamson, et al. (under review)

Opimoda+



REMOVAL OF 13 MOST DIVERGENT GENES

Based on the the internal branch length connecting eukaryotes and Alphaproteobacteria

OPIMODA+

DIPHODA+

95.9/88

98.1/93

SUPPORT: aLRT/UFBOOT



REMOVAL OF 7 FASTEST EVOLVING TAXA

Based on tip-to-tip distance

OPIMODA+

DIPHODA+

99.8/97

99.3/90

SUPPORT: aLRT/UFBOOT



The recovered root position suggests LECA was an excavate-like organism

Williamson, Eme, et al. Nature, 2025



SUMMARY

- New, much larger mitochondrial protein dataset for rooting the eukaryote 

tree

- All tested models recover an ‘Opimoda+’ root in both maximum likelihood 

and Bayesian frameworks

- Root position is robust to the removal of the fastest evolving sites, genes, 

and taxa



Complex cytoskeletal elements common to ‘typical’ excavates are 
features of LECA that were lost in other lineages

- LECA was likely a small (25 μm or less), unicellular, and flagellated organism.

- Phagotrophic (likely bacterivorous), probably feeding on prey in suspension (rather 

than as a surface feeder like many amoebae). 

- Had a defined cell shape crucial to its motility and feeding, underpinned by a 

complex cytoskeletal organisation, including microtubular roots of diverse sizes, 

functions, and associated non-microtubular elements. 

- Models of eukaryogenesis need to have such a form of eukaryote as their 

“endpoint”. 



Useful tools



A phylogenetically aware pipeline for 
phylogenomic dataset construction

David Žihala, Alexander K. Tice, Tomáš Pánek, Serafim Nenarokov, Eric Salomaki, 
Andrew J. Roger, Martin Kolísko, Fabien Burki, Laura Eme, Marek Eliáš,                                               

Matthew W. Brown



Selection of orthologs and orthologous 
sequences in them is critical

• Contamination
• On sequencer
• Endosymbionts

• Prey (or predators)

• Paralogs
• Genomic duplication

• Deep- (i.e., a- vs b-tubulin)

• Mid- (within a group)

• In- (within a species (or genus))

• Phylogenetically informative
• Broad taxonomic sampling

• To do this requires trees and 
careful consideration of them
• Eyes 



New method (and tool) allows for others 
to simply do phylogenomics
• Ships with a phylogenomic matrix and tool (via GitHub)

• 310 Taxa, covering all deep eukaryotic groups

• 240 Orthologs (whittled down from Brown et al. 2018)

• Coded in Python in a easy to to install CONDA environment
• All dependencies are automatically installed

conda env create -f fisher_env.yml



Tree Inspection



Tree Inspection



• Easily installed and simple usage

• Ships with our dataset
• Includes Paralogs for tree building, more accurate identification

• Your own gene sets can be incorporated or used independently

• Tools for post-phylogenomic analyses



• Easily installed and simple usage

• Ships with our dataset
• Includes Paralogs for tree building, more accurate identification

• Your own gene sets can be incorporated or used independently

• Tools for post-phylogenomic analyses





ETE3


	Slide 1: ”Deep” phylogenetics
	Slide 2
	Slide 3: Four major phylogenetic problems of eukaryogenesis
	Slide 4: 1 - Protein models of evolution
	Slide 5: 1.1 Empirical models
	Slide 6: Code degeneracy
	Slide 7: Code degeneracy
	Slide 8: Evolutionary models for amino acid changes
	Slide 9: Amino acid physico-chemical properties
	Slide 10: Empirical models: amino acid substitution matrices based on observed substitutions
	Slide 11: Empirical models: amino acid substitution matrices based on observed substitutions
	Slide 12
	Slide 13: Amino acid exchange matrices
	Slide 14: Empirical models
	Slide 15: Empirical models
	Slide 16: Empirical models
	Slide 17: The WAG matrix (2001)
	Slide 18: Further improvements: the LG matrix (2008)
	Slide 19: Empirical models
	Slide 20: Summary
	Slide 23: Rate heterogeneity parameter
	Slide 24: Rate heterogeneity parameter
	Slide 25: Rate heterogeneity parameter
	Slide 26: 1.2 Fully parameterized time-reversible model
	Slide 27: GTR (General time reversible)
	Slide 28: 1.3 Mixture models
	Slide 29: Your model is giving you the probability of going from amino acid i to j at site x, evolving at rate rv on branch te
	Slide 30
	Slide 31: The problem…
	Slide 32: Evolution of chaperonin 60 over ~1.5 billion years
	Slide 33: Distribution of the number of different amino acids at aligned sites
	Slide 34: Starting at a D with a site homogeneous matrix (LG+F)
	Slide 35: What happens to phylogenetic estimation when you ignore site-heterogeneity?
	Slide 36: Why long branch attraction (LBA)?
	Slide 37: Why long branch attraction (LBA)?
	Slide 38: Mixture models
	Slide 39: Mixture models: terminology warning
	Slide 40: LG4M and LG4X mixture models 
	Slide 41: LG4M and LG4X mixture models 
	Slide 42: LG4M and LG4X
	Slide 43: The CAT model
	Slide 44: The CAT model
	Slide 45: C10, C20, …, C60 mixture models
	Slide 46: Problem with mixture models
	Slide 47: PMSF (Posterior Mean Site Frequency) model Implemented in IQtree
	Slide 48: Example:  Posterior mean site frequency for ‘G’ at a given site x,    with a 4 class mixture model
	Slide 49: Example:  Posterior mean site frequency for ‘G’ at a given site x,    with a 4 class mixture model
	Slide 50: E.g.: Posterior mean site frequency for ‘G’ at a given site x, with a 4 class mixture model
	Slide 51: PMSF (Posterior Mean Site Frequency) model
	Slide 52: PMSF (Posterior Mean Site Frequency) model
	Slide 53: Take home (for this part)
	Slide 54: Other types of mixture models
	Slide 55: Probability of going from amino acid i to j  at site x, evolving at rate rv on branch te
	Slide 56: Changing rates of evolution at sites in different parts of the tree of life (=heterotachy)
	Slide 57: Changing rates of evolution at sites in different parts of the tree of life (=heterotachy)
	Slide 58: Models that deal with heterotachy  (changing site rates across the tree)
	Slide 59: Functionally divergent sites generate heterotachy
	Slide 60: Functionally divergent sites generate heterotachy
	Slide 61: Functionally divergent sites generate heterotachy
	Slide 62
	Slide 63
	Slide 64
	Slide 65: PART 2  Real examples of ‘deep’ phylogenetic problems and how we tried to address them 
	Slide 66: Single gene trees are not enough to resolve ‘ancient relationships’
	Slide 67
	Slide 68: What can affect your topology
	Slide 69: Example 1: Effect of model misspecification and of fast-evolving sites
	Slide 70: Model mispecification: statistical inconsistency 
	Slide 71
	Slide 72: Pygsuia biforma (Brown,…Roger 2013)
	Slide 73: Two different topologies within Obazoa are supported by different phylogenetic models
	Slide 74: Two different topologies within Obazoa are supported by different phylogenetic models
	Slide 75: How to decide which is real and which is artefact?
	Slide 76: How to decide which is real and which is artefact?
	Slide 77: Cross-validation favors CAT-GTR over LG
	Slide 78: How do decide which is real and which is artefact?
	Slide 79: Removal of fast-evolving sites
	Slide 80: Fast Evolving Sites removal
	Slide 81: Estimate support for conflictual clades as we remove Fast-Evolving Sites (under LG+G)
	Slide 82: Estimate support for conflictual clades as we remove Fast-Evolving Sites (under LG+G)
	Slide 83: Estimate support for conflictual clades as we remove Fast-Evolving Sites (under LG+G)
	Slide 84: Breviates+Apusomonads (B+A) topology vs. Apusomonads+Opisthokonts (O+A)
	Slide 85
	Slide 86: Removal of 18,000 fastest-evolving sites
	Slide 87: Fast-evolving site removal: warning
	Slide 88: Example 2: Effect of amino-acid preference change over the tree
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102: A site-and-branch-heterogeneous profile mixture model GFmix
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115: 69 new Asgard genomes
	Slide 116
	Slide 117: 69 new Asgard MAGs
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138: Example 3
	Slide 139
	Slide 140
	Slide 141: OUTGROUP ROOTING
	Slide 142
	Slide 143: Metamonads are problematic taxa  for datasets of mitochondrial proteins
	Slide 144
	Slide 145: SITE-HETEROGENEOUS MODELS 
	Slide 146: SITE-HETEROGENEOUS MODELS 
	Slide 147: All models recover a root separating eukaryotes into ‘Opimoda+’ and ‘Diphoda+’ 
	Slide 148: All models recover a root separating eukaryotes into ‘Opimoda+’ and ‘Diphoda+’
	Slide 149: TESTING ALTERNATE ROOT POSITIONS
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156: TESTING FOR LONG BRANCH ATTRACTION
	Slide 157: TESTING FOR LONG BRANCH ATTRACTION
	Slide 158: As model misspecification increases, preference for an Anaeramoeba root over an Opimoda+ root also increases 
	Slide 159
	Slide 160: Removing the fastest-evolving sites, genes, and taxa
	Slide 161: REMOVAL OF FASTEST EVOLVING SITES
	Slide 162: REMOVAL OF 13 MOST DIVERGENT GENES
	Slide 163: REMOVAL OF 7 FASTEST EVOLVING TAXA
	Slide 164
	Slide 165: SUMMARY
	Slide 166: Complex cytoskeletal elements common to ‘typical’ excavates are features of LECA that were lost in other lineages
	Slide 167: Useful tools
	Slide 168: A phylogenetically aware pipeline for phylogenomic dataset construction
	Slide 169: Selection of orthologs and orthologous sequences in them is critical
	Slide 170: New method (and tool) allows for others to simply do phylogenomics
	Slide 172: Tree Inspection
	Slide 173: Tree Inspection
	Slide 174
	Slide 175
	Slide 176
	Slide 177: ETE3

