Likelihood-Based Phylogenetic Inference


```
#NEXUS
begin data;
    dimensions ntax=5 nchar=895;
    format gap=- datatype=dna;
    matrix
    Human AAGCTTCACCGGCGCAGTCATTCTCATAATCGCCCACGGACTT.....AACCCAAACAACCCAGCTCTCCCTAAGCTT
    Chimpanzee AAGCTTCACCGGCGCAATTATCCTCATAATCGCCCACGGACTT. . . . .AACCCAAACAACCCAGCTCTCCCTAAGCTT
    Gorilla AAGCTTCACCGGCGCAGTTGTTCTTATAATTGCCCACGGACTT......AACCCAAACAATTCAACTCTCCCTAAGCTT
    Orangutan AAGCTTCACCGGCGCAACCACCCTCATGATTGCCCATGGACTC.....CACCCAGACACTACAACTCTCACTAAGCTT
    Gibbon AAGCTTTACAGGTGCAACCGTCCTCATAATCGCCCACGGACTA.....AACCCAAACGCTAGAACTCTCCCTAAGCTT
    ;
end;
```

Some Possible Character Histories

$\pi_{A} \times p_{A A}\left(v_{1}\right) \times p_{A A}\left(v_{2}\right) \times p_{A G}\left(v_{3}\right) \times p_{A G}\left(v_{4}\right)$

π_{i} - Stationary frequencies

 $p_{i j}(v)$ - Transition probabilities

Felsenstein, J. 1981. Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol. 17:368-376.

Gallager, R. G. 1962. Low-density parity-check codes. IRE Trans. Inform. Theory 8:21-28.
Gallager, R. G. 1963. Low-density parity-check codes. MIT Press, Cambridge, Mass.

$$
\ell_{i}=\left(\sum_{j} p_{i j}\left(\nu_{L}\right) \ell_{j}^{L}\right) \times\left(\sum_{j} p_{i j}\left(\nu_{R}\right) \ell_{j}^{R}\right)
$$

$$
\ell_{i}=\left(\sum_{j} p_{i j}\left(\nu_{L}\right) \ell_{j}^{L}\right) \times\left(\sum_{j} p_{i j}\left(\nu_{R}\right) \ell_{j}^{R}\right)
$$

$$
\ell_{i}=\left(\sum_{j} p_{i j}\left(\nu_{L}\right) \ell_{j}^{L}\right) \times\left(\sum_{j} p_{i j}\left(\nu_{R}\right) \ell_{j}^{R}\right)
$$

$$
\ell_{i}=\left(\sum_{j} p_{i j}\left(\nu_{L}\right) \ell_{j}^{L}\right) \times\left(\sum_{j} p_{i j}\left(\nu_{R}\right) \ell_{j}^{R}\right)
$$

$$
\ell_{i}=\left(\sum_{j} p_{i j}\left(\nu_{L}\right) \ell_{j}^{L}\right) \times\left(\sum_{j} p_{i j}\left(\nu_{R}\right) \ell_{j}^{R}\right)
$$

$$
\ell_{i}=\left(\sum_{j} p_{i j}\left(\nu_{L}\right) \ell_{j}^{L}\right) \times\left(\sum_{j} p_{i j}\left(\nu_{R}\right) \ell_{j}^{R}\right)
$$

$$
\ell_{i}=\left(\sum_{j} p_{i j}\left(\nu_{L}\right) \ell_{j}^{L}\right) \times\left(\sum_{j} p_{i j}\left(\nu_{R}\right) \ell_{j}^{R}\right)
$$

$$
\ell_{i}=\left(\sum_{j} p_{i j}\left(\nu_{L}\right) \ell_{j}^{L}\right) \times\left(\sum_{j} p_{i j}\left(\nu_{R}\right) \ell_{j}^{R}\right)
$$

$$
\ell_{i}=\left(\sum_{j} p_{i j}\left(\nu_{L}\right) \ell_{j}^{L}\right) \times\left(\sum_{j} p_{i j}\left(\nu_{R}\right) \ell_{j}^{R}\right)
$$

$$
\ell_{i}=\left(\sum_{j} p_{i j}\left(\nu_{L}\right) \ell_{j}^{L}\right) \times\left(\sum_{j} p_{i j}\left(\nu_{R}\right) \ell_{j}^{R}\right)
$$

$$
\ell_{i}=\left(\sum_{j} p_{i j}\left(\nu_{L}\right) \ell_{j}^{L}\right) \times\left(\sum_{j} p_{i j}\left(\nu_{R}\right) \ell_{j}^{R}\right)
$$

$$
\ell_{i}=\left(\sum_{j} p_{i j}\left(\nu_{L}\right) \ell_{j}^{L}\right) \times\left(\sum_{j} p_{i j}\left(\nu_{R}\right) \ell_{j}^{R}\right)
$$

$$
\ell_{i}=\left(\sum_{j} p_{i j}\left(\nu_{L}\right) \ell_{j}^{L}\right) \times\left(\sum_{j} p_{i j}\left(\nu_{R}\right) \ell_{j}^{R}\right)
$$

$$
\ell_{i}=\left(\sum_{j} p_{i j}\left(\nu_{L}\right) \ell_{j}^{L}\right) \times\left(\sum_{j} p_{i j}\left(\nu_{R}\right) \ell_{j}^{R}\right)
$$

$$
\ell_{i}=\left(\sum_{j} p_{i j}\left(\nu_{L}\right) \ell_{j}^{L}\right) \times\left(\sum_{j} p_{i j}\left(\nu_{R}\right) \ell_{j}^{R}\right)
$$

$$
\ell_{i}=\left(\sum_{j} p_{i j}\left(\nu_{L}\right) \ell_{j}^{L}\right) \times\left(\sum_{j} p_{i j}\left(\nu_{R}\right) \ell_{j}^{R}\right)
$$

$$
\ell_{i}=\left(\sum_{j} p_{i j}\left(\nu_{L}\right) \ell_{j}^{L}\right) \times\left(\sum_{j} p_{i j}\left(\nu_{R}\right) \ell_{j}^{R}\right)
$$

$$
\ell_{\text {Site }}=\pi_{A} \times \ell_{A}^{\mathrm{Root}}+\pi_{C} \times \ell_{C}^{\mathrm{Root}}+\pi_{G} \times \ell_{G}^{\mathrm{Root}}+\pi_{T} \times \ell_{T}^{\mathrm{Root}}
$$

$$
\ell_{\text {Site }}=\pi_{A} \times \ell_{A}^{\mathrm{Root}}+\pi_{C} \times \ell_{C}^{\mathrm{Root}}+\pi_{G} \times \ell_{G}^{\mathrm{Root}}+\pi_{T} \times \ell_{T}^{\mathrm{Root}}
$$

$$
\ell_{\text {Site }}=\pi_{A} \times \ell_{A}^{\mathrm{Root}}+\pi_{C} \times \ell_{C}^{\mathrm{Root}}+\pi_{G} \times \ell_{G}^{\mathrm{Root}}+\pi_{T} \times \ell_{T}^{\mathrm{Root}}
$$

$\pi_{A} \times p_{A A}\left(v_{1}\right) \times p_{A A}\left(v_{2}\right) \times p_{A G}\left(v_{3}\right) \times p_{A G}\left(v_{4}\right)$

π_{i} - Stationary frequencies

 $p_{i j}(v)$ - Transition probabilities
Continuous-Time Markov Chain

To

	A	C	G	T
A	-0.886	0.190	0.633	0.063
C	0.253	-0.696	0.127	0.316
G	1.266	0.190	-1.519	0.063
T	0.253	0.949	0.127	-1.329

$$
\mathrm{Q}=\left(\begin{array}{cccc}
-0.886 & 0.190 & 0.633 & 0.063 \\
0.253 & -0.696 & 0.127 & 0.316 \\
1.266 & 0.190 & -1.519 & 0.063 \\
0.253 & 0.949 & 0.127 & -1.329
\end{array}\right)
$$

To

		A	C	G	T
From					
A	-0.886	0.190	0.633	0.063	
C	0.253	-0.696	0.127	0.316	
G	1.266	0.190	-1.519	0.063	
	T	0.253	0.949	0.127	-1.329

Interpretation: If the process is in state i, we wait an exponentially distributed amount of time with parameter $-q_{i i}$ until the next substitution occurs.

To

	A	C	G	T
A	-0.886	0.190	0.633	0.063
C	0.253	-0.696	0.127	0.316
G	1.266	0.190	-1.519	0.063
T	0.253	0.949	0.127	-1.329

Interpretation: The change is to state j with probability $-q_{i j} / q_{i i}$.

Something - the arrival of a customer, a coal mining disaster, a photon hitting a photodetector, a particle emission from a radioactive substance, a nucleotide substitution - occurs at a constant rate.

The rate at which the somethings (events) occur is λ.

Start observing
the process here

Sojourn time until the first event

Second sojourn time

Third sojourn time

Important fact: The sojourn times are exponentially-distributed random variables

Interesting fact: The sojourn time is the exponentially-distributed time until the next event.

However, one can ask what is the waiting time until the k-th event?

Wait until second event

0

Time

Wait until third event

Interesting fact: The waiting time until

 the k-th event is a gamma-distributed random variable, with parameters k and λ.$$
f(t)=\frac{\lambda^{k}}{\Gamma(k)} t^{k-1} e^{-\lambda t}
$$

Note: $\Gamma(k)=(k-1)!$ for integer k

Start observing the process here

Time

Stop observing the process here

Interesting fact: The number of events that occur in the interval T is a Poissondistributed random variable with parameter λT.

$$
\operatorname{Pr}(k \text { events })=\frac{e^{-\lambda T}(\lambda T)^{k}}{k!}
$$

Finish

Branch
Length (v)

Start

Finish

	A	C	G	T
A	-0.886	0.190	0.633	0.063
C	0.253	-0.696	0.127	0.316
G	1.266	0.190	-1.519	0.063
T	0.253	0.949	0.127	-1.329

Start

Finish

	A	C	G	T
A	-0.886	0.190	0.633	0.063
C	0.253	-0.696	0.127	0.316
G	1.266	0.190	-1.519	0.063
T	0.253	0.949	0.127	-1.329

Start in state G

Start

Finish

	A	C	G	T
A	-0.886	0.190	0.633	0.063
C	0.253	-0.696	0.127	0.316
G	1.266	0.190	-1.519	0.063
T	0.253	0.949	0.127	-1.329

$\operatorname{Exp}(1.519)$

Start

Finish

	A	C	G	T	
A	-0.886	0.190	0.633	0.063	
C	0.253	-0.696	0.127	0.316	
G	1.266	0.190	-1.519	0.063	
T	0.253	0.949	0.127	-1.329	$p_{A}=\frac{1.266}{1.519}=0.833$
					$p_{C}=\frac{0.190}{1.519}=0.125$

Start

Finish

	A	C	G	T		
A	-0.886	0.190	0.633	0.063		
C	0.253	-0.696	0.127	0.316		
G	1.266	0.190	-1.519	0.063		
T	0.253	0.949	0.127	-1.329		
:---						

Start

Finish

	A	C	G	T
A	-0.886	0.190	0.633	0.063
C	0.253	-0.696	0.127	0.316
G	1.266	0.190	-1.519	0.063
T	0.253	0.949	0.127	-1.329

Exp(0.886)

Start

Finish

| | A | C | G | T |
| :---: | :---: | :---: | :---: | :---: |$p_{C}=\frac{0.190}{0.886}=0.214$

Start

Finish

	A	C	G	T	$P_{C}=\frac{0.190}{0.886}=0.214$
A	-0.886	0.190	0.633	0.063	
C	0.253	-0.696	0.127	0.316	$p_{G}=\frac{0.633}{0.886}=0.714$
G	1.266	0.190	-1.519	0.063	$p_{T}=\frac{0.063}{0.886}=0.072$
T	0.253	0.949	0.127	-1.329	

Start

Finish

Exp(0.696)

	A	C	G	T
A	-0.886	0.190	0.633	0.063
C	0.253	-0.696	0.127	0.316
G	1.266	0.190	-1.519	0.063
T	0.253	0.949	0.127	-1.329

Start

Finish

2 changes

Start
G

Start in G 100 times

End in A 31 times; end in C 1 time; end in G 67 times; end in 1 time

Start in G 100 times

Transition probabilities for $v=0.1$

		Ended In			
		A	C	G	T
	A				
Started	C				
In	G	0.31	0.01	0.67	0.01
	T				

(Monte Carlo estimates of transition probabilities based on a total of 100 simulations)

Transition probabilities for $v=0.1$

(Monte Carlo estimates of transition probabilities based on a total of 50,000 simulations)

Start in A

Start in G

Start in C

Transition probabilities for $v=0.1$

		Ended In			
		A	C	G	T
	A	0.88	0.02	0.09	0.01
Started	C	0.03	0.90	0.00	0.07
In	G	0.31	0.01	0.67	0.01
	T	0.04	0.20	0.04	0.72

(Monte Carlo estimates of transition probabilities based on a total of 100 simulations)

Transition probabilities for $v=0.1$

		Ended In			
		A	C	G	T
	A	0.9180	0.0182	0.0577	0.0060
Started	C	0.0249	0.9346	0.0125	0.0279
In	G	0.1125	0.0182	0.8634	0.0058
	T	0.0241	0.0877	0.0113	0.8767

(Monte Carlo estimates of transition probabilities based on a total of 50,000 simulations)

Monte Carlo
(50,000 reps)

Ended In

		A	C	G	T
		A	0.9180	0.0182	0.0577
Started	C	0.0060			
In	G	0.1125	0.9346	0.0125	0.0279
	T	0.0241	0.0877	0.8634	0.00058
			0.8113	0.8767	

Exact: $\mathbf{P}(t)=e^{\mathbf{Q} t}$
Ended In

		A	C	G	T
	A	0.9191	0.0184	0.0563	0.0061
Started	C	0.0245	0.9344	0.0123	0.0287
In	G	0.1127	0.0183	0.8627	0.0061
	T	0.0245	0.0862	0.0123	0.8770

Monte Carlo
(50,000 reps)

Ended In

reps)		A	C	G	T
		A	0.9180	0.0182	0.0577
Started	C	0.0060			
In	G	0.1125	0.9346	0.0125	0.0279
	T	0.0241	0.0877	0.8634	0.0058
				0.8767	

Exact: $\mathbf{P}(t)=e^{\mathbf{Q} t}$

Ended In

 Started C the process, starting in state i, In $\quad G$ can end in state j.

T $\left\lvert\, \begin{array}{lllll} & 0.0245 & 0.0862 & 0.0123 & 0.8770\end{array}\right.$

Transition probabilities for any rate matrix, Q, can be calculated as

$$
\mathbf{P}(t)=e^{\mathbf{Q} t}
$$

$\mathbf{P}(\mathbf{0 . 0 0})=$| | | A | C | G |
| :---: | :---: | :---: | :---: | :---: |
| A | 1.0000 | 0.0000 | 0.0000 | 0.0000 |
| C | 0.0000 | 1.0000 | 0.0000 | 0.0000 |
| G | 0.0000 | 0.0000 | 1.0000 | 0.0000 |
| T | 0.0000 | 0.0000 | 0.0000 | 1.0000 |

	A	C	G	T
A	0.9912	0.0019	0.0062	0.0006

$\boldsymbol{P}(0.01)=\quad$| C | 0.0025 | 0.9931 | 0.0013 | 0.0031 |
| :--- | :--- | :--- | :--- | :--- |
| G | 0.0125 | 0.0019 | 0.9849 | 0.0006 |
| | T | 0.0025 | 0.0094 | 0.0013 | 0.9868

$\mathbf{P}(\mathbf{0 . 1 0})=$| | A | C | G | T |
| :---: | :---: | :---: | :---: | :---: |
| A | 0.9191 | 0.0183 | 0.0563 | 0.0061 |
| C | 0.0243 | 0.9344 | 0.0122 | 0.0287 |
| G | 0.1127 | 0.0184 | 0.8627 | 0.0061 |
| T | 0.0245 | 0.0861 | 0.0122 | 0.8770 |

$\mathbf{P}(0.50)=$| | A | C | G | T |
| :---: | :---: | :---: | :---: | :---: |
| A | 0.7079 | 0.0813 | 0.1835 | 0.0271 |
| C | 0.1085 | 0.7377 | 0.0542 | 0.0995 |
| G | 0.3670 | 0.0813 | 0.5244 | 0.0271 |
| T | 0.1085 | 0.2985 | 0.0542 | 0.5387 |

$\mathbf{P}(1.00)=$| | A | C | G | T |
| :---: | :---: | :---: | :---: | :---: |
| A | 0.5803 | 0.1406 | 0.2320 | 0.0468 |
| C | 0.1875 | 0.5871 | 0.0937 | 0.1314 |
| G | 0.4641 | 0.1406 | 0.3483 | 0.0468 |
| T | 0.1875 | 0.3942 | 0.0937 | 0.3243 |

$\boldsymbol{P}(5.00)=$| | A | C | G | T |
| :---: | :---: | :---: | :---: | :---: |
| A | 0.4113 | 0.2873 | 0.2056 | 0.0957 |
| C | 0.3831 | 0.3190 | 0.1915 | 0.1062 |
| G | 0.4112 | 0.2873 | 0.2056 | 0.0957 |
| T | 0.3831 | 0.3188 | 0.1915 | 0.1065 |

	A	C	G	T	
	A	0.4005	0.2994	0.2002	0.0998
C	0.3992	0.3008	0.1996	0.1002	
G	0.4005	0.2994	0.2002	0.0998	
T	0.3992	0.3008	0.1996	0.1002	

$\boldsymbol{P}(100.00)=$| | | A | C | G |
| :---: | :---: | :---: | :---: | :---: |
| | A | 0.4000 | 0.3000 | 0.2000 |
| | 0.1000 | | | |
| G | 0.4000 | 0.3000 | 0.2000 | 0.1000 |
| | T | 0.4000 | 0.3000 | 0.2000 |
| 0.1000 | 0.3000 | 0.2000 | 0.1000 | |

$\left.\boldsymbol{P}(1000.00)=\begin{array}{c|cccc} & A & C & G & T \\ \hline & A & 0.4000 & 0.3000 & 0.2000 \\ \hline & 0.1000 \\ G & 0.4000 & 0.3000 & 0.2000 & 0.1000 \\ T & 0.4000 & 0.3000 & 0.2000 & 0.1000 \\ & & 0.4000 & 0.3000 & 0.2000\end{array}\right) 0.1000$

Stationary probabilities (also called equilibrium frequencies, prior probabilities) are the probabilities of finding the process in the different states after an infinite amount of time.

$$
\begin{aligned}
& \pi_{\mathrm{A}} \\
& \pi_{\mathrm{C}} \\
& \pi_{\mathrm{G}} \\
& \pi_{\mathrm{T}}
\end{aligned}
$$

Stationary probabilities (also called equilibrium frequencies, prior probabilities) are the probabilities of finding the process in the different states after an infinite amount of time.

$$
\begin{aligned}
& \pi_{\mathrm{A}}=0.4 \\
& \pi_{\mathrm{C}}=0.3 \\
& \pi_{\mathrm{G}}=0.2 \\
& \pi_{\mathrm{T}}=0.1
\end{aligned}
$$

$\pi_{A} \times p_{A A}\left(v_{1}\right) \times p_{A A}\left(v_{2}\right) \times p_{A G}\left(v_{3}\right) \times p_{A G}\left(v_{4}\right)$

π_{i} - Stationary frequencies

 $p_{i j}(v)$ - Transition probabilities$$
\mathbf{Q}=\left(\begin{array}{cccc}
- & \pi_{C} & \kappa \pi_{G} & \pi_{T} \\
\pi_{A} & - & \pi_{G} & \kappa \pi_{T} \\
\kappa \pi_{A} & \pi_{C} & - & \pi_{T} \\
\pi_{A} & \kappa \pi_{C} & \pi_{G} & -
\end{array}\right) \mu
$$

$$
\begin{aligned}
\kappa & =5 \\
\pi_{A} & =0.4 \\
\pi_{C} & =0.3 \\
\pi_{G} & =0.2 \\
\pi_{T} & =0.1
\end{aligned}
$$

$$
\mathbf{Q}=\left(\begin{array}{rrrr}
-0.886 & 0.190 & 0.633 & 0.063 \\
0.253 & -0.696 & 0.127 & 0.316 \\
1.266 & 0.190 & -1.519 & 0.063 \\
0.253 & 0.949 & 0.127 & -1.329
\end{array}\right)
$$

$\begin{gathered}\text { Jukes \& Cantor } \\ \text { (1969) }\end{gathered} \quad Q=\left(\begin{array}{cccc}-1 & 1 / 3 & 1 / 3 & 1 / 3 \\ 1 / 3 & -1 & 1 / 3 & 1 / 3 \\ 1 / 3 & 1 / 3 & -1 & 1 / 3 \\ 1 / 3 & 1 / 3 & 1 / 3 & -1\end{array}\right)$
Kimura (1980) $\quad \mathrm{Q}=\left(\begin{array}{cccc}-1 & 1 /(\kappa+2) & \kappa /(\kappa+2) & 1 /(\kappa+2) \\ 1 /(\kappa+2) & -1 & 1 /(\kappa+2) & \kappa /(\kappa+2) \\ \kappa /(\kappa+2) & 1 /(\kappa+2) & -1 & 1 /(\kappa+2) \\ 1 /(\kappa+2) & \kappa /(\kappa+2) & 1 /(\kappa+2) & -1\end{array}\right)$
Hasegawa, Kishino, $\quad \mathrm{Q}=\left(\begin{array}{cccc}- & \pi_{\mathrm{C}} & \kappa \pi_{\mathrm{G}} & \pi_{\mathrm{T}} \\ \pi_{\mathrm{A}} & - & \pi_{\mathrm{G}} & \kappa \pi_{\mathrm{T}} \\ \kappa \pi_{\mathrm{A}} & \pi_{\mathrm{C}} & - & \pi_{\mathrm{T}} \\ \pi_{\mathrm{A}} & \kappa \pi_{\mathrm{C}} & \pi_{\mathrm{G}} & -\end{array}\right) \mu=1$ Yano (1985)
GTR (Tavare, 1986) $\mathrm{Q}=\left(\begin{array}{cccc}- & r_{A C} \pi_{\mathrm{C}} & r_{A G} \pi_{\mathrm{G}} & r_{A T} \pi_{\mathrm{T}} \\ r_{A C} \pi_{\mathrm{A}} & - & r_{C C} \pi_{\mathrm{G}} & r_{C T} \pi_{\mathrm{T}} \\ r_{A G} \pi_{\mathrm{A}} & r_{C G} \pi_{\mathrm{C}} & - & \pi_{\mathrm{T}} \\ r_{A T} \pi_{\mathrm{A}} & r_{C T} \pi_{\mathrm{C}} & \pi_{\mathrm{G}} & -\end{array}\right) \mu$

The most general nucleotide model possible is not necessarily time-reversible

$$
\mathrm{Q}=\left(\begin{array}{cccc}
- & r_{A C} & r_{A G} & r_{A T} \\
r_{C A} & - & r_{C G} & r_{C T} \\
r_{G A} & r_{G C} & - & 1 \\
r_{T A} & r_{T C} & r_{T G} & -
\end{array}\right) \mu
$$

and has 11 parameters

Dice

To

		A	C	G	T
From	A	-0.886	0.190	0.633	0.063
	C	0.253	-0.696	0.127	0.316
	G	1.266	0.190	-1.519	0.063
	T	0.253	0.949	0.127	-1.329

Pattern Probabilities (I)

AAAA -- 0.199465	AGAA -- 0.014711	CAAA -- 0.018317	CGAA -- 0.001490
AAAC -- 0.004185	AGAC -- 0.000725	CAAC -- 0.000628	CGAC -- 0.000210
AAAG -- 0.014711	AGAG -- 0.019868	CAAG -- 0.001490	CGAG -- 0.002878
AAAT -- 0.001395	AGAT -- 0.000242	CAAT -- 0.000166	CGAT -- 0.000048
AACA -- 0.009075	AGCA -- 0.000843	CACA -- 0.005277	CGCA -- 0.000669
ACC -- 0.0	AGCC -- 0.	CACC -- 0.004524	CGCC -- 0.002262
AACG -- 0.000843	AGCG -- 0.002202	CACG -- 0.000669	CGCG -- 0.002304
AACT -- 0.000121	AGCT -- 0.000048	CACT -- 0.000375	CGCT -- 0.000188
AAGA -- 0.028625	AGGA -- 0.005985	CAGA -- 0.003304	CGGA -- 0.001065
AAGC -- 0.000702	AGGC -- 0.000755	CAGC -- 0.000210	CGGC -- 0.000209
AAGG -- 0.005985	AGGG -- 0.032738	CAGG -- 0.001065	CGGG -- 0.006655
AAGT -- 0.000234	AGGT -- 0.000252	CAGT -- 0.000	CGGT -- 0.000059
AATA -- 0.003025	AGTA -- 0.000281	ATA -- 0.000959	CGTA -- 0.000120
AATC -- 0.000121	AGTC -- 0.000048	CATC -- 0.000360	CGTC -- 0.000180
AATG -- 0.000281	AGTG -- 0.000734	CATG -- 0.000120	CGTG -- 0.000420
AATT -- 0.000154	AGTT -- 0.000073	CATT -- 0.000404	CGTT -- 0.000202
ACAA -- 0.004185	ATAA -- 0.001395	CCAA -- 0.000628	CTAA -- 0.000166
ACAC -- 0.005482	ATAC -- 0.000350	CCAC -- 0.009592	CTAC -- 0.000415
ACAG -- 0.000725	ATAG -- 0.000242	CCAG -- 0.000210	CTAG -- 0.000048
ACAT -- 0.000350	ATAT -- 0.001594	CCAT -- 0.000415	CTAT -- 0.001214
ACCA -- 0.000703	ATCA -- 0.000121	CCCA -- 0.004524	CTCA -- 0.000375
ACCC -- 0.019527	ATCC -- 0.000752	CCCC -- 0.167489	CTCC -- 0.005866
ACCG -- 0.000315	ATCG -- 0.000048	CCCG -- 0.002262	CTCG -- 0.000188
ACCT -- 0.000752	ATCT -- 0.001546	CCCT -- 0.005866	CTCT -- 0.007452
ACGA -- 0.000702	ATGA -- 0.000234	CCGA -- 0.000210	CTGA -- 0.000048
ACGC -- 0.001837	ATGC -- 0.000116	CCGC -- 0.004796	CTGC -- 0.000208
ACGG -- 0.000755	ATGG -- 0.000252	CCGG -- 0.000209	CTGG -- 0.000059
ACGT -- 0.000116	ATGT -- 0.000535	CCGT -- 0.000208	CTGT -- 0.000607
ACTA -- 0.000121	ATTA -- 0.000154	CCTA -- 0.000360	CTTA -- 0.000404
ACTC -- 0.001781	ATTC -- 0.000517	CCTC -- 0.011625	CTTC -- 0.001716
ACTG -- 0.000048	ATTG -- 0.000073	CCTG -- 0.000180	CTTG -- 0.000202
ACTT -- 0.000517	ATTT -- 0.004	. 00	73

Pattern Probabilities (II)

AA	0.045565
GAAC	0.001004
GAAG	0.005060
GAAT	0.000335
GACA	0.002514
GACC	0.000315
GACG	0.000532
GACT	0.000048
GAGA	0.014437
GAGC	0.000476
GAGG	-- 0.008240
GAGT	0.000159
GATA	0.000838
GATC	0.000048
GATG	0.000177
GATT	0.000073
GCAA	0.001004
GCAC	0.001837
GCAG	0.000453
GCAT	-- 0.000116
GCCA	0.000315
GCCC	0.009764
GCCG	0.000194
GCCT	0.000376
GCGA	0.000476
GCGC	0.001823
GCGG	0.001251
GCGT	- 0.000117
GCTA	0.000048
GCTC	-- 0.000891
GCTG	- 0.000036
GCTT	0.000258

GGAA	0.005060
AC	0.000453
GGAG	0.017648
GGAT	0.000151
GGCA	0.000532
GGCC	0.000194
GCG	04
CT	0.000036
GGGA	0.008240
GGGC	0.001251
GGGG	0.056794
GGGT	0.000417
GGTA	0.000177
GGTC	0.000036
GGTG	0.000968
GGTT	0.000040
GTAA	0.000335
AC	0.000116
GTAG	0.000151
AT	000535
GTCA	-- 0.000048
GTCC	-- 0.000376
GTCG	0.000036
GTCT	- 0.000773
GTGA	-- 0.000159
GTGC	-- 0.000117
GTGG	0.000417
GTGT	- 0.000530
GTTA	-- 0.000073
GTTC	-- 0.000258
GTTG	-- 0.000040
TT	0.002355

A -- 0.006106	TGAA -- 0.000497
TAAC -- 0.000166	TGAC -- 0.000048
TAAG -- 0.000497	TGAG -- 0.000959
TAAT -- 0.000099	TGAT -- 0.000038
TACA -- 0.000959	TGCA -- 0.000120
TACC -- 0.000548	TGCC -- 0.000274
TACG -- 0.000120	TGCG -- 0.000420
TACT -- 0.000215	TGCT -- 0.000108
TAGA -- 0.001101	TGGA -- 0.000355
TAGC -- 0.000048	TGGC -- 0.000059
TAGG -- 0.000355	TGGG -- 0.002218
TAGT -- 0.000038	TGGT -- 0.000030
TATA -- 0.001119	TGTA -- 0.0001
TATC -- 0.000231	TGTC -- 0.000116
TATG -- 0.000143	TGTG -- 0.000488
TATT -- 0.000893	TGTT -- 0.000447
TCAA -- 0.000166	TTAA -- 0.00009
TCAC -- 0.001389	TTAC -- 0.000240
TCAG -- 0.000048	TTAG -- 0.000038
TCAT -- 0.000240	TTAT -- 0.002009
TCCA -- 0.000548	TTCA -- 0.00021
TCCC -- 0.019456	TTCC -- 0.001275
TCCG -- 0.000274	TTCG -- 0.000108
TCCT -- 0.001275	TTCT -- 0.006924
TCGA -- 0.000048	TTGA -- 0.000038
TCGC -- 0.000694	TTGC -- 0.000120
TCGG -- 0.000059	TTGG -- 0.000030
TCGT -- 0.000120	TTGT -- 0.001005
TCTA -- 0.000231	TTTA -- 0.000893
TCTC -- 0.004935	TTTC -- 0.003240
TCTG -- 0.000116	TTTG -- 0.000447
TCTT -- 0.003240	TTTT -- 0.0315

Exotic models of substitution

- Expand model around the sequence
- Allow the substitution process to vary at a single site in the sequence
- Allow the substitution process to vary over a tree at shared sites

AA AC AG AU CA CC CG CU GA GC GG GU UA UC UG UU

AA AC AG AU CA CC CG CU GA GC GG GU UA UC UG UU

| $A A$ | - | | | | | 0 | 0 | 0 | | 0 | 0 | 0 | | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $A C$ | | - | | | 0 | | 0 | 0 | 0 | | 0 | 0 | 0 | | 0 | 0 |
| $A G$ | | | - | | 0 | 0 | | 0 | 0 | 0 | | 0 | 0 | 0 | | 0 |
| AU | | | | - | 0 | 0 | 0 | | 0 | 0 | 0 | | 0 | 0 | 0 | |
| CA | | 0 | 0 | 0 | - | | | | | 0 | 0 | 0 | | 0 | 0 | 0 |
| CC | 0 | | 0 | 0 | | - | | | 0 | | 0 | 0 | 0 | | 0 | 0 |
| CG | 0 | 0 | | 0 | | | - | | 0 | 0 | | 0 | 0 | 0 | | 0 |
| CU | 0 | 0 | 0 | | | | | - | 0 | 0 | 0 | | 0 | 0 | 0 | |
| GA | | 0 | 0 | 0 | | 0 | 0 | 0 | - | | | | | 0 | 0 | 0 |
| GC | 0 | | 0 | 0 | 0 | | 0 | 0 | | - | | | 0 | | 0 | 0 |
| GG | 0 | 0 | | 0 | 0 | 0 | | 0 | | | - | | 0 | 0 | | 0 |
| GU | 0 | 0 | 0 | | 0 | 0 | 0 | | | | | - | 0 | 0 | 0 | |
| UA | 0 | 0 | 0 | | 0 | 0 | 0 | | 0 | 0 | 0 | - | | | | |
| UC | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | | 0 | 0 | | - | | | |
| UG | 0 | 0 | | 0 | 0 | 0 | | 0 | 0 | 0 | | 0 | | | - | |
| UU | 0 | 0 | 0 | | 0 | 0 | 0 | | 0 | 0 | 0 | | | | | - |

AA AC AG AU CA CC CG CU GA GC GG GU VA UC UG UV

| AA | - | $?$ | $?$ | $?$ | $?$ | 0 | 0 | 0 | $?$ | 0 | 0 | 0 | $?$ | 0 | 0 | 0 |
| :--- |
| AC | $?$ | - | $?$ | $?$ | 0 | $?$ | 0 | 0 | 0 | $?$ | 0 | 0 | 0 | $?$ | 0 | 0 |
| AG | $?$ | $?$ | - | $?$ | 0 | 0 | $?$ | 0 | 0 | 0 | $?$ | 0 | 0 | 0 | $?$ | 0 |
| AU | $?$ | $?$ | $?$ | - | 0 | 0 | 0 | $?$ | 0 | 0 | 0 | $?$ | 0 | 0 | 0 | $?$ |
| CA | $?$ | 0 | 0 | 0 | - | $?$ | $?$ | $?$ | $?$ | 0 | 0 | 0 | $?$ | 0 | 0 | 0 |
| CC | 0 | $?$ | 0 | 0 | $?$ | - | $?$ | $?$ | 0 | $?$ | 0 | 0 | 0 | $?$ | 0 | 0 |
| CG | 0 | 0 | $?$ | 0 | $?$ | $?$ | - | $?$ | 0 | 0 | $?$ | 0 | 0 | 0 | $?$ | 0 |
| CU | 0 | 0 | 0 | $?$ | $?$ | $?$ | $?$ | - | 0 | 0 | 0 | $?$ | 0 | 0 | 0 | $?$ |
| GA | $?$ | 0 | 0 | 0 | $?$ | 0 | 0 | 0 | - | $?$ | $?$ | $?$ | $?$ | 0 | 0 | 0 |
| GC | 0 | $?$ | 0 | 0 | 0 | $?$ | 0 | 0 | $?$ | - | $?$ | $?$ | 0 | $?$ | 0 | 0 |
| GG | 0 | 0 | $?$ | 0 | 0 | 0 | $?$ | 0 | $?$ | $?$ | - | $?$ | 0 | 0 | $?$ | 0 |
| GU | 0 | 0 | 0 | $?$ | 0 | 0 | 0 | $?$ | $?$ | $?$ | $?$ | - | 0 | 0 | 0 | $?$ |
| UA | $?$ | 0 | 0 | 0 | $?$ | 0 | 0 | 0 | $?$ | 0 | 0 | 0 | - | $?$ | $?$ | $?$ |
| UC | 0 | $?$ | 0 | 0 | 0 | $?$ | 0 | 0 | 0 | $?$ | 0 | 0 | $?$ | - | $?$ | $?$ |
| UG | 0 | 0 | $?$ | 0 | 0 | 0 | $?$ | 0 | 0 | 0 | $?$ | 0 | $?$ | $?$ | - | $?$ |
| UU | 0 | 0 | 0 | $?$ | 0 | 0 | 0 | $?$ | 0 | 0 | 0 | $?$ | $?$ | $?$ | $?$ | - |

Doublet Model
 (Schöniger and von Haeseler, 1994)

\(q_{i j}= \begin{cases}\kappa \pi_{j} \& : transition
\pi_{j} \& : transversion
0 \& : i and j differ at two positions\end{cases}\)

	AAA	AAC	AAG	AAT	- ○○。○	TTA	TTC	TTG	TTT
AAA	-	?	?	?		0	0	0	0
AAC	?	-	?	?		0	0	0	0
AAG	?	?	-	?		0	0	0	0
AAT	?	?	?	-		0	0	0	0
:									
TTA	0	0	0	0		-	?	?	?
TTC	0	0	0	0		?	-	?	?
TTG	0	0	0	0		?	?	-	?
TTT	0	0	0	0		?	?	?	-

Codon Model

(Goldman \& Yang, 1994; Muse and Gaut, 1994; Nielsen \& Yang, 1998)

$q_{i j}= \begin{cases}\omega \kappa \pi_{j} & : \text { nonsynonymous transition } \\ \omega \pi_{j} & : \text { nonsynonymous transversion } \\ \kappa \pi_{j} & : \text { synonymous transition } \\ \pi_{j} & : \text { synonymous transversion } \\ 0 & : i \text { and } j \text { differ at } 2 \text { or } 3 \text { positions }\end{cases}$

	AAAAAA	AAAAAC	- ○○○。	TTTTTG	TTTTTT
AAAAAA	-	?		0	0
AAAAAC	?	-		0	0
:					
TTTTTG	0	0		-	?
TTTTTT	0	0		?	-

4092 states not shown

'Sequence' Model
(Robinson et al., 2003)

$$
4
$$

$r \sim \operatorname{Gamma}(\alpha, \alpha)$
$\operatorname{Pr}($ site $\mid \alpha$, other stuff $)=\int_{0}^{\infty} \operatorname{Pr}($ site $\mid r$, other stuff $) g(r \mid \alpha, \alpha) d r$
Yang, Z. 1993. Maximum likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Mol. Biol. Evol. 10:1396-1401.

$\operatorname{Pr}($ site $\mid \alpha$, other stuff $)=\sum_{k=1}^{K} \operatorname{Pr}\left(\right.$ site $\mid r_{k}$, other stuff $) \frac{1}{K}$
Yang, Z. 1994. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximate methods. J. Mol. Evol. 39:306-314.

$r \sim\left\{\begin{aligned} 0 & : \\ 1 /(1-p) & : \quad \text { with probability probability } 1-p\end{aligned}\right.$
$\operatorname{Pr}($ site $\mid p$, other stuff $)=\operatorname{Pr}($ site $\mid r=0$, other stuff $) \times p$

$$
+\operatorname{Pr}(\text { site } \mid r=1 /(1-p), \text { other stuff }) \times(1-p)
$$

ACCGCATTTCAACC

	A_{0}	C_{0}	G_{0}	T_{0}	A_{1}	C_{1}	G_{1}	T_{1}
A_{0}								
C_{0}								
G_{0}								
T_{0}								
A_{1}								
C_{1}								
G_{1}								
T_{1}								

	A0	Co	Go	To	A_{1}	C_{1}	G_{1}	T_{1}
A_{0}	-	0	0	0		0	0	0
C_{0}	0	-	0	0	0		0	0
Go	0	0	-	0	0	0		0
To	0	0	0	-	0	0	0	
A_{1}		0	0	0	-			
C_{1}	0		0	0		-		
G_{1}	0	0		0			-	
T ${ }_{1}$	0	0	0					-

	A_{0}	C_{0}	G_{0}	T_{0}	A_{1}	C_{1}	G_{1}	T_{1}
A_{0}	-	0	0	0	λq	0	0	0
C_{0}	0	-	0	0	0	λq	0	0
G_{0}	0	0	-	0	0	0	λq	0
T_{0}	0	0	0	-	0	0	0	λq
A_{1}	λp	0	0	0	-			
C_{1}	0	λp	0	0		-		
G_{1}	0	0	λp	0			-	
T_{1}	0	0	0	λp				-

	A_{0}	C_{0}	G_{0}	T_{0}	A_{1}	C_{1}	G_{1}	T_{1}
$\mathrm{~A}_{0}$	-	0	0	0	λq	0	0	0
C_{0}	0	-	0	0	0	λq	0	0
G_{0}	0	0	-	0	0	0	λq	0
$\mathrm{~T}_{0}$	0	0	0	-	0	0	0	λq
$\mathrm{~A}_{1}$	λp	0	0	0	-	$?$	$?$	$?$
C_{1}	0	λp	0	0	$?$	-	$?$	$?$
G_{1}	0	0	λp	0	$?$	$?$	-	$?$
$\mathrm{~T}_{1}$	0	0	0	λp	$?$	$?$	$?$	-

Covariotide-like model of Tuffley \& Steel (1997)

$$
Q=\left(\begin{array}{cccccccc}
- & 0 & 0 & 0 & \lambda_{01} & 0 & 0 & 0 \\
0 & - & 0 & 0 & 0 & \lambda_{01} & 0 & 0 \\
0 & 0 & - & 0 & 0 & 0 & \lambda_{01} & 0 \\
0 & 0 & 0 & - & 0 & 0 & 0 & \lambda_{01} \\
\lambda_{10} & 0 & 0 & 0 & - & r_{A C} \pi_{C} & r_{A A} \pi_{G} & r_{A \pi} \pi_{T} \\
0 & \lambda_{10} & 0 & 0 & r_{A C} \pi_{A} & - & r_{C G} \pi_{G} & r_{C T} \pi_{T} \\
0 & 0 & \lambda_{10} & 0 & r_{A G} \pi_{A} & r_{C G} \pi_{C} & - & \pi_{T} \\
0 & 0 & 0 & \lambda_{10} & r_{A T} \pi_{A} & r_{C T} \pi_{C} & \pi_{G} & -
\end{array}\right) \quad Q=\left(\begin{array}{ccc}
\text { Process is } & \text { Switching from } \\
\text { off (no substitutions } & \text { off to on } \\
\text { are possible) } & \\
\hline \text { Switching from } & \text { Process is } \\
\text { on to off } & \text { on (substitutions } \\
\text { may occur) }
\end{array}\right)
$$

MCMC

Why I like likelihood

- Good for phylogeny estimation (good models lead to good trees?)
- Allows us to learn about the pattern and, to some extent, the process of molecular evolution (model comparison)
- Coherent methodology that uses all of the information in the data

Why I like Bayes

- Allows us to examine quite complicated models (e.g., sequence models)
- Easy interpretation of results
- Allows us to marginalize over things we should be marginalizing (e.g., trees, substitution parameters, partitions, alignments)
- I like to think that scientists operate in a Bayesian manner

Caveats

- How complicated can our models become before they are unidentifiable?
- MCMC allows us to do things that are impossible to do any other way. That said, the method is complicated and not guaranteed to work for any particular problem.
- How sensitive are results to the prior?

