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1 Assumptions of phylogenetic methods

The models used in phylogenetic analysis of molecular data have three components. First, they assume a
tree relating the samples. Here, the samples might be DNA sequences collected from different species, or
different individuals within a population. In either case, a basic assumption is that the samples are related to
one another through an (unknown) tree. This would be a species tree for sequences sampled from different
species, or perhaps a coalescence tree for sequences sampled from individuals from within a population.
Second, they assume that the branches of the tree have an (unknown) length. Ideally, the length of a branch
on a tree is in terms of time. However, in practice it is difficult to determine the duration of a branch on a
tree in terms of time. Instead, the lengths of the branches on the tree are in terms of expected change per
character. Figure 1 shows some examples of trees with branch lengths. The main points the reader should
remember are: (1) Trees can be rooted or unrooted. Rooted trees have a time direction whereas unrooted
trees do not. Most methods of phylogenetic inference, including most implementations of maximum likelihood
and Bayesian analysis, are based on time-reversible models of evolution that produce unrooted trees, which
must be rooted using some other criterion, such as the outgroup criterion (using distantly related reference
sequences to locate the root). (2) The space of possible trees is huge. The number of possible unrooted
of only n = 50 species, there are about B(50) = 2.838 x 107 possible unrooted trees that can explain the
phylogenetic relationships of the species.

The third component of a phylogenetic model is a process that describes how the characters change
on the phylogeny. All model-based methods of phylogenetic inference, including maximum likelihood and
Bayesian estimation of phylogeny, currently assume that character change occurs according to a continuous-
time Markov chain. At the heart of any continuous-time Markov chain is a matrix of rates, specifying the
rate of change from one state to another. For example, the instantaneous rate of change under the model
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trees for n species is B(n) = (Schréder, 1870). This means that for a relatively small problem

Figure 1: Example of unrooted and rooted trees. An unrooted tree of four species (center) with the
branch lengths drawn proportional to their length in terms of expected number of substitutions per site.
The five trees surrounding the central, unrooted, tree show the five possible rooted trees that result from
the unrooted tree.



described by Hasegawa et al. (1984, 1985; hereafter called the HKY85 model) is
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This matrix specifies the rate of change from one nucleotide to another; the rows and columns of the matrix
are ordered A, C,G,T, so that the rate of change from C' — G is qog = mg. Similarly, the rates of change
between C — T, G — A, and T — C, are qor = k7, qgcAa = K74, and qpg = T, respectively. The
diagonals of the rate matrix, denoted with the dashes, are specified such that each row sums to zero. Finally,
the rate matrix is rescaled such that the mean rate of substitution is one. This can be accomplished by

setting = —1/>,c (a,c.c.1) Tidii- This rescaling of the rate matrix such that the mean rate is one allows
the branch lengths on the phylogenetic tree to be interpreted as expected number of nucleotide substitutions
per site.

We will make a few important points about the rate matrix. First, the rate matrix may have free
parameters. For example, the HKY85 model has the parameters x, w4, m¢, g, and wr. The parameter
k is the transition/transversion rate bias; when x = 1 transitions occur at the same rate as transversions.
Typically, the transition/transversion rate ratio, estimated using maximum likelihood or Bayesian inference,
is greater than one; transitions occur at a higher rate than transversions. The other parameters—m4,
Tc, Ta, and mp—are the base frequencies, and have a biological interpretation as the frequency of the
different nucleotides and are also, incidentally, the stationary probabilities of the process (more on stationary
probabilities later). Second, the rate matrix, Q, can be used to calculate the transition probabilities and the
stationary distribution of the substitution process. The transition probabilities and stationary distribution
play a key role in calculating the likelihood, and we will spend more time here developing an intuitive
understanding of these concepts.

1.1 Transition probabilities

Let us consider a specific example of a rate matrix, with all of the parameters of the model taking specific
values. For example, if we use the HKY85 model and fix the parameters to xk = 5, m4 = 0.4, m¢ = 0.3,
mg = 0.2, and 7y = 0.1, we get the following matrix of instantaneous rates

~0.886  0.190  0.633  0.063
B B 0.253 —0.696 0.127  0.316
Q= {ai} = 1.266  0.190 —1.519  0.063
0.253 0949  0.127 —1.329

Note that these numbers are not special in any particular way. That is to say, they are not based upon any
observations from a real data set, but are rather arbitrarily picked to illustrate a point. The point is that
one can interpret the rate matrix in the physical sense of specifying how changes occur on a phylogenetic
tree. Consider the very simple case of a single branch on a phylogenetic tree. Let’s assume that the branch
is v = 0.5 in length and that the ancestor of the branch is the nucleotide G. The situation we have is
something like that shown in Figure 2A. How can we simulate the evolution of the site starting from the G
at the ancestor? The rate matrix tells us how to do this. First of all, because the current state of the process
is G, the only relevant row of the rate matrix is the third one:

Q={a} =1 1266 0190 —1519 0063

The overall rate of change away from nucleotide G is qga + gac + gor = 1.266 + 0.190 + 0.063 = 1.519.
Equivalently, the rate of change away from nucleotide G is simply —gag = 1.519. In a continuous-time
Markov model, the waiting time between substitutions is exponentially distributed. The exact shape of the
exponential distribution is determined by its rate, which is the same as the rate of the corresponding process
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Figure 2: Simulation under the HKY85 substitution process. A single realization of the substitution
process under the HKY85 model when k =5, m4 = 0.4, m¢ = 0.3, ng = 0.2, and 7wy = 0.1. The length of
the branch is v = 0.5 and the starting nucleotide is G (light gray). A, The process starts in nucleotide G. B,
The first change is 0.152 units up the branch. C, the change is from G to A (dark gray). The time at which
the next change occurs exceeds the total branch length, so the process ends in state C.

in the Q matrix. For instance, if we are in state G, we wait an exponentially distributed amount of time
with rate 1.519 until the next substitution occurs. One can easily construct exponential random variables
from uniform random variables using the equation
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where A is the rate and u is a uniform(0,1) random number. For example, my calculator has a uniform(0,1)
random number generator. The first number it generated is v = 0.794. This means that the next time at
which a substitution occurs is 0.152 up from the root of the tree (using A = 1.519; Figure 2B). The rate
matrix also specifies the probabilities of a change from G to the nucleotides A, C, and T'. These probabilities
are

t log, (u)

G—A: 125 =0833, G—C:393=0125, G—T:%0 =0.042

To determine what nucleotide the process changes to we would generate another uniform(0,1) random number
(again called u). If u is between 0 and 0.833, we will say that we had a change from G to A. If the random
number is between 0.833 and 0.958 we will say that we had a change from G to C. Finally, if the random
number u is between 0.958 and 1.000, we will say we had a change from G to T'. The next number generated
on our calculator was u = 0.102, which means the change was from G to A. The process is now in a different
state (the nucleotide A) and the relevant row of the rate matrix is

—0.8%6 0.190 0.633 0.063
Q= {g;} = . . .

We wait an exponentially distributed amount of time with parameter A = 0.886 until the next substitution
occurs. When the substitution occurs, it is to a C, G, or T with probabilities % = 0.214, % =0.714,
and 3963 — (. 072, respectively. This process of generating random and exponentially distributed times until

the r?éfc%cﬁsubstitution occurs and then determining (randomly) what nucleotide the change is to is repeated
until the process exceeds the length of the branch. The state the process is in when it passes the end of
the branch is recorded. In the example of Figure 2, the process started in state G and ended in state A.
(The next uniform random variable generated on our calculator was u = 0.371, which means that the next
substitution would occur 1.119 units above the substitution from G — A. The process is in the state A
when it passed the end of the branch.) The only non-random part of the entire procedure was the initial
decision to start the process in state G. All other aspects of the simulation used a uniform random number
generator and our knowledge of the rate matrix to simulate a single realization of the HKY85 process of

DNA substitution.



This Monte Carlo procedure for simulating the HKY85 process of DNA substitution can be repeated.
The following table summarizes the results of 100 simulations, each of which started with the nucleotide G:

Starting Ending Number of
Nucleotide Nucleotide Replicates

G A 27
G C 10
G G 99
G T 4

This table can be interpreted as a Monte Carlo approximation of the transition probabilities from nucleotide G
to nucleotide @ € (A, C, G, T). Specifically, the Monte Carlo approximations are pg4(0.5) ~ 0.27, pgc(0.5) ~
0.10, pcc(0.5) ~ 0.59, and per(0.5) ~ 0.04. These approximate probabilities are all conditioned on the
starting nucleotide being G and the branch length being v = 0.5. We performed additional simulations
in which the starting nucleotide was A, C, or T. Together with the earlier Monte Carlo simulation that
started with the nucleotide G, these additional simulations allow us to fill out the following table with the
approximate transition probabilities:

Ending
Nucleotide
A C G T
Al 0.67 0.13 0.20 0.00
Starting C| 0.13 0.70 0.07 0.10
Nucleotide G| 0.27 0.10 0.59 0.04
T| 0.12 0.30 0.08 0.50

Clearly, these numbers are only crude approximations to the true transition probabilities; after all, each
row in the table is based on only 100 Monte Carlo simulations. However, they do illustrate the meaning
of the transition probabilities; the transition probability, p;;(v), is the probability that the substitution
process ends in nucleotide j conditioned on it starting in nucleotide 7 after an evolutionary amount of time
v. The table of approximate transition probabilities, above, can be interpreted as a matrix of probabilities,
usually denoted P(v). Fortunately, we do not need to rely on Monte Carlo simulation to approximate
the transition probability matrix. Instead, we can calculate the transition probability matrix exactly using
matrix exponentiation:

P(v) = e
For the case we have been simulating, the exact transition probabilities (to four decimal places) are

0.7079 0.0813 0.1835 0.0271
0.1085 0.7377 0.0542 0.0995
P(0.5) =1{pi (05} = | (3670 00813 05244 00271
0.1085 0.2985 0.0542 0.5387

The transition probability matrix accounts for all the possible ways the process could end up in nucleotide
j after starting in nucleotide i. In fact, each of the infinite possibilities is weighted by its probability under
the substitution model.

1.1.1 Stationary distribution

The transition probabilities provide the probability of ending in a particular nucleotide after some specific
amount of time (or opportunity for substitution, v). These transition probabilities are conditioned on starting
in a particular nucleotide. What do the transition probability matrices look like as v increases? The following
transition probability matrices show the effect of increasing branch length:

1.000 0.000 0.000 0.000 0.991 0.002 0.006 0.001
0.000 1.000 0.000 0.000 0.003 0.993 0.001 0.003
P(0.00) = 0.000 0.000 1.000 0.000 P(0.01) = 0.013 0.002 0.985 0.001
0.000 0.000 0.000 1.000 0.003 0.009 0.001 0.987



0.919 0.018 0.056 0.006 0.708 0.081 0.184 0.027

0.024 0934 0.012 0.029 0.106 0738 0.054 0.100
PO10)=1 0113 0018 0863 0006 | FOP0O=| 0367 0081 0524 0.027
0.025 0.086 0012 0.877 0.109 0299 0.054 0.539
0580 0.141 0232 0.047 0411 0287 0206 0.096
0.188 0.587 0.094 0.131 0.383 0319 0.192 0.106
PLO0) = 0464 0141 0348 0.047 | FOOO=1 0411 09287 0206 0.096
0.188 0394 0.094 0.324 0.383 0319 0.192 0.107
0401 0.299 0.200 0.099 0.400 0.300 0.200 0.100
0.399 0.301 0.199 0.100 0.400 0.300 0.200 0.100
PAOO) =1 0401 0299 0200 0009 | FTAO=1 0400 0300 0200 0.100
0.399 0.301 0.199 0.100 0.400 0.300 0.200 0.100

(Each matrix was calculated under the HKY85 model with k = 5, 74 = 0.4, 7¢ = 0.3, 7¢ = 0.2, and
mr = 0.1.) Note that as the length of a branch, v, increases, the probability of ending up in a particular
nucleotide converges to a single number, regardless of the starting state. For example, the probability of
ending up in C is about 0.300 when the branch length is v = 100. This is true regardless of whether the
process starts in A, C', G, or T. The substitution process has in a sense ‘forgotten’ its starting state.

The stationary distribution is the probability of observing a particular state when the branch length
increases without limit (v — o00). The stationary probabilities of the four nucleotides are w4 = 0.4, 7o = 0.3,
7w = 0.2, and 7wy = 0.1 for the example discussed above. The models typically used in phylogenetic analyses
have the stationary probabilities built into the rate matrix, Q. You will notice that the rate matrix for
the HKY85 model has parameters w4, m¢, 7g, and 7, and that the stationary frequencies of the four
nucleotides for our example match the input values for our simulations. Building the stationary frequency
of the process into the rate matrix, while somewhat unusual, makes calculating the likelihood function
easier. For one, specifying the stationary distribution saves the time of figuring out what the stationary
distribution is (which involves solving the equation 7Q = 0, which simply says that, if we start with the
nucleotide frequencies reflecting the stationary distribution, the process will have no effect on the nucleotide
frequencies). For another, it allows one to more easily specify a time reversible substitution model. [A time
reversible substitution model has the property that m;q;; = 7,¢;; for alli,j € (A,C,G,T), i # j.] Practically
speaking, time reversibility means that we can work with unrooted trees instead of rooted trees (assuming
that the molecular clock is not enforced).

1.1.2 Calculating the likelihood

The transition probabilities and stationary distribution are used when calculating the likelihood. For exam-
ple, consider the following alignment of sequences for five species’:

Species 1  TAACTGTAAAGGACAACACTAGCAGGCCAGACGCACACGCACAGCGCACC
Species 2 TGACTTTAAAGGACGACCCTACCAGGGCGGACACAAACGGACAGCGCAGC
Species 3 ~ CAAGTTTAGAAAACGGCACCAACACAACAGACGTATGCAACTGACGCACC
Species 4  CGAGTTCAGAAGACGGCACCAACACAGCGGACGTATGCAGACGACGCACC
Species 5  TGCCCTTAGGAGGCGGCACTAACACCGCGGACGAGTGCGGACAACGTACC

This is clearly a rather small alignment of sequences to use for estimating phylogeny, but it will illustrate
how likelihoods are calculated. The likelihood is the probability of the alignment of sequences, conditioned
on a tree with branch lengths. The basic procedure is to calculate the probability of each site (column)
in the matrix. Assuming that the substitutions are independent across sites, the probability of the entire
alignment is simply the product of the probabilities of the individual sites.

How is the likelihood at a single site calculated? Figure 3 shows the observations at the first site (7', T,
C, C, and T) at the tips of one of the possible phylogenetic trees for five species. The tree in Figure 3 is
unusual in that we will assume that the nucleotide states at the interior nodes of the tree are also known.

IThis alignment was simulated on the tree of Figure 3 under the HKY85 model of DNA substitution. Parameter values for
the simulation can be found in the caption of Table 1.
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Figure 3: A tree with states assigned to the tips. One of the possible (rooted) trees describing the
evolutionary history of the five species. The states at the first site in the alignment of the text are shown
at the tips of the tree. The states at the interior nodes of the tree are also shown, though in reality these
states are not observed. The length of the ith branch is denoted v;.

This is clearly a bad assumption, because we cannot directly observe the nucleotides that occurred at any
point on the tree in the distant past. For now, however, ignore this fact and bear with us. The probability
of observing the configuration of nucleotides at the tips and interior nodes of the tree in Figure 3 is

Pr(TTCCT, ATCG|7,v,0) =
76 pGa(vs) par(vi) par(v2) pac (vs) por(ve) por(vr) pre(va) pre(vs)

Here we show the probability of the observations (TTCCT) and the states at the interior nodes of the
tree (ATCG) conditioned on the tree (7), branch lengths (v), and other model parameters (#). Note that
to calculate the probability of the states at the tips of the tree, we used the stationary probability of the
process (m) and also the transition probabilities [p;;(v)]. The stationary probability of the substitution
process was used to calculate the probability of the nucleotide at the root of the tree. In this case, we are
assuming that the substitution process has been running a very long time before it reached the root of our
five species tree. We then use the transition probabilities to calculate the probabilities of observing the
states at each end of the branches. When taking the product of the transition probabilities, we are making
the additional assumption that the substitutions on each branch of the tree are independent of one another.
This is probably a reasonable assumption for real data sets.

The probability of observing the states at the tips of the tree, described above, was conditioned on
the interior nodes of the tree taking specific values (in this case ATCG). To calculate the unconditional
probability of the observed states at the tips of the tree, we sum over all possible combinations of nucleotide
states that can be assigned to the interior nodes of the tree

Pr(TTCCT|7,v,0) = Z Z Z Z Pr(TTCCT, wxyz|t,v,0)
w Ty =z

where w,z,y,z € (A,C,G,T). Averaging the probabilities over all combinations of states at the interior
nodes of the tree accomplishes two things. First, we remove the assumption that the states at the interior
nodes take specific values. Second, because the transition probabilities account for all of the possible ways
we could have state i at one end of a branch and state j at the other, the probability of the site is also aver-
aged over all possible character histories. Here, we think of a character history as one realization of changes
on the tree that is consistent with the observations at the tips of the tree. For example, the parsimony
method, besides calculating the minimum number of changes on the tree, also provides a character history;
the character history favored by parsimony is the one that minimizes the number of changes required to
explain the data. In the case of likelihood-based methods, the likelihood accounts for all possible charac-
ter histories, with each history weighted by its probability under the substitution model. Nielsen (2002)
described a method for sampling character histories in proportion to their probability that relies on the



Site Prob. Site Prob. Site Prob. Site Prob. Site Prob.

1 0.004025 11  0.029483 21  0.179392 31 0.179392 41  0.003755
2 0.001171 12 0.006853 22  0.001003 32 0.154924 42  0.005373
3 0.008008 13 0.024885 23 0.154924 33 0.007647 43  0.016449
4 0.002041 14 0.154924 24 0.179392 34 0.000936 44  0.029483
5 0.005885 15 0.007647 25 0.005719 35 0.024885 45  0.154924
6 0.000397 16 0.024124 26 0.001676 36  0.000403 46 0.047678
7 0.002802 17  0.154924 27 0.000161 37  0.024124 47  0.010442
§ 0.179392 18 0.004000 28 0.154924 38 0.154924 48 0.179392
9 0.024124 19 0.154924 29 0.001171 39 0.011088 49  0.002186
10 0.024885 20 0.004025 30 0.047678 40 0.000161 50  0.154924

Table 1: Probabilities of individual sites. The probabilities of the fifty sites for the example alignment
from the text. The likelihoods are calculated assuming the tree of Figure 3 with the branch lengths being
v = 0.1, vg = 0.1, v3 = 0.2, v4 = 0.1, v5 = 0.1, vg = 0.1, v; = 0.2, and vg = 0.1. The substitution model
parameters were also fixed, with k =5, 74 = 0.4, 7¢ = 0.3, 71¢ = 0.2, and 7 = 0.1.

interpretation of the rate matrix as specifying waiting times between substitutions. His method provides a
means to reconstruct the history of a character that does not inherit the flaws of the parsimony method.
Namely, Nielsen’s method allows multiple changes on a single branch and also allows for non-parsimonious
reconstructions of a character’s history.

Before moving on, we will make two final points. First, in practice no computer program actually
evaluates all combinations of nucleotides that can be assigned to the interior nodes of a tree when calculating
the probability of observing the data at a site. There are simply too many combinations for trees of even
small size. For example, for a tree of 100 species, there are 99 interior nodes and 4.02 x 10% combinations
of nucleotides at the ancestral nodes on the tree. Instead, Felsenstein’s (1981) pruning algorithm is used
to calculate the likelihood at a site. Felsenstein’s method is mathematically equivalent to the summation
shown above, but can evaluate the likelihood at a site in a fraction of the time it would take to plow through
all combinations of ancestral states. Second, the overall likelihood of a character matrix is the product of
the site likelihoods. If we assume that the tree of Figure 3 is correct (with all of the parameters taking the
values specified in the caption of Table 1), then the probability of observing the data is

0.004025 x 0.001171 x 0.008008 X ... x 0.154924 = 1.2316 x 104

where there are fifty factors, each factor representing the probability of an individual site (column) in
the alignment. Table 1 shows the probabilities of all fifty sites for the tree of Figure 3. Note that the
overall probability of observing the data is a very small number (=~ 107%%). This is typical of phylogenetic
problems and results from the simple fact that many numbers between 0 and 1 are multiplied together.
Computers cannot accurately hold very small numbers in memory. Programmers avoid this problem of
computer “underflow” by using the log probability of observing the data. The log probability of observing
the sample alignment of sequences presented earlier is log, £ = log,(1.2316 x 107%%) = —216.234734. The log
likelihood can be accurately stored in computer memory.

2 Four equivalent ways to simulate DNA sequences on a tree

In the previous section, we covered some of the most basic assumptions made in a phylogenetic analysis;
DNA sequences are assumed to evolve on a phylogenetic tree (with branch lengths) under a continuous-time
Markov model of DNA substitution. The substitution process is assumed to be independent across sites.
These assumptions apply to maximum likelihood, Bayesian inference, and distance methods (when the dis-
tances are ‘corrected’ under some evolutionary model). It is not so clear what assumptions the parsimony
method is making (one potential criticism of the method), but several authors have found interesting connec-
tions between the parsimony method and maximum likelihood under an over-parameterized continuous-time
Markov model of DNA substitution.
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Figure 4: The model tree for the simulations. We simulate data on this tree. The branch lengths are
denoted v;.

In this section, we will test our knowledge obtained in the previous section by simulating DNA sequences
on a phylogenetic tree. Simulation is often used in phylogenetics. Simulation has been used to elucidate the
statistical properties of different phylogenetic methods, and it can be used to generate the null distribution
of a test statistic in phylogenetic hypothesis testing. In other words, learning to simulate DNA sequences is
not a wasted effort. Not only can you strengthen your intuition of phylogenetic methods, but you may also
be able to apply simulation for your own research.

How exactly should one simulate evolution on a phylogeneitc tree? One basic point is that an alignment
should be simulated on a site-by-site basis. That is, we first simulate the data at the first site, then the second
site, and so on. We can take this approach because of the assumption of independence of the substitution
process across sites; to simulate the data at a particular site (column in the alignment), we don’t need to
know the results of the simulation at any other site.

Another basic point is that we must know all of the parameters of the simulation: we have to decide
on the precise phylogenetic tree on which to simulate the DNA sequences; we need to know the branch
lengths on this tree; and, finally, we must pick a substitution model. The substitution model is a matrix
of rates, specifying the rate of change from one nucleotide to another. In other words, we are taking a
God-like view of the situation. We know everything about the evolutionary history and process. Of course,
in reality we never know everything about how organisms evolved, but must make strong assumptions about
how evolution occurred in order to estimate (make educated guesses) at the underlying evolutionary history.
However, pretending to be a God, even for a little while, is a great feeling.

In the following, we will evolve DNA sequences on the four-taxon tree shown in Figure 4. We will also
assume that DNA substitution occurs according to the HKY85 model with the parameters fixed to the
following values: kK =5, m4 = 0.4, 7¢ = 0.3, m1g = 0.2, and 7wy = 0.1. The rate matrix, then, is

—0.886  0.190  0.633  0.063

B B 0.253 —0.696 0.127  0.316
Q={g;} = 1.266  0.190 —1.519  0.063
0.253 0949  0.127 —1.329

Now, we are ready to simulate data on the tree of Figure 4. We will go over four different methods for
simulating data, each of which takes advantage of our knowledge of continuous-time Markov chains.

2.1 Method 1

The first method only relies on our ability to generate exponentially distributed random numbers. If we
generate a uniform random number on the interval (0,1), we can generate an exponential random number
(with parameters A) using the transformation ¢t = —4 log, (u) (where u is the uniform random number and
t is the exponentially distributed random number). The first method involves an addition to the tree of
Figure 4 which seems unusual: We take the tree of Figure 4, and add a ‘tail’ to it—a branch that extends
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Figure 5: The model tree for the simulations, with a tail. The tree of Figure 4, with a long branch
at the root that starts in nucleotide A.

for some distance from the root of the tree. In this case, the branch at the root of the tree is vg = 10.0 in
length. Moreover, we assume that the process is in state (nucleotide) A at the very root of the tree. The
situation we have is like that shown in Figure 5.

We simulate the process starting at the root of the tree. The process is in state A, meaning that the only
relevant row of the rate matrix is the first one:

—0.886 0.190 0.633 0.063
Q={g;} = ' '

We wait an exponentially distributed amount of time with parameter A = 0.886 until the next substitution
occurs. When the substitution occurs, it is to a C, G, or T with probabilities % = 0.214, % =0.714,
and 2963 — 0,072, respectively. In the first section, we used this method for simulating along a single branch

of a %fgg. Here we apply the method with vigor, applying it to each branch in the tree from the root to
the tips. We continue to simulate up the root branch of the tree until our simulation exceeds the length of
the branch. We then record the nucleotide state the process was in when it exceeded a length of 10. We
write this state at the end of the root branch, where it splits into branches 1 and 6. We then repeat the
simulation process for branch 1 and then branch 6, recording the state the process is in at the end of those
two branches. We then concentrate our attention on branches 4 and 5, and then on branches 2 and 3. At
the end, we should have nucleotides at the ends of branches 1, 2, 3, and 4.

One puzzling aspect of this simulation is why we always start the process in nucleotide A, and why we
even bothered to add the tail to the root of the tree. We did this because for Method 1, we only are going to
allow ourselves to generate exponential random numbers. If this is the case, we can use our understanding
of the rate matrix as specifying waiting times between substitutions to complete our simulation. However,
we are not allowing ourselves knowledge of the stationary distribution of the substitution process. Hence,
we always start our simulations in a particular nucleotide (in this case we chose to start in the nucleotide A),
and then simulate the process for a long time along the root (tail) branch of the tree. The hope is that if we
make the length of the tail branch long enough, that the process is at stationarity by the time it reaches the
first split in the tree (the speciation event that eventually produces the four species at the tips of the tree).

Method 1 relies on the idea that we can come pretty near to stationarity with a moderately long branch.
We know that the stationary distribution of the HKY85 process of nucleotide substitution with the specific
parameters we chose is 74 = 0.4, m1¢ = 0.3, m1g = 0.2, mp = 0.1. We also know that the transition probability



for a branch of v = 10.0 is
0.401 0.299 0.200 0.099

0.399 0.301 0.199 0.100
0.401 0.299 0.200 0.099
0.399 0.301 0.199 0.100

P(10.0) =

The transition probability matrix tells us that if we start in nucleotide A, then we end up in state A, C, G,
and T with probabilities 0.401, 0.299, 0.200, and 0.099, respectively. These numbers are very close to the
actual stationary probabilities, so perhaps this method is not such a bad one.

2.2 Method 2

The second simulation method we explore is similar to the first one, but we eliminate the long tail on the
tree. Instead of simulating the process along a long branch before we reach the first split in the tree, we
simply decide which nucleotide is at the first split by sampling from the stationary distribution. We know
that the stationary probabilities of the process are m4 = 0.4, ¢ = 0.3, 71¢ = 0.2, 7 = 0.1, so why not
simply pick a nucleotide at random with these probabilities?

2.3 Method 3

The third simulation method does away with the need to generate exponential random variables. It takes
advantage of our knowledge of the stationary distribution (as does the second method), but also takes
advantage of our ability to calculate transition probabilities. There are only three different lengths of
branches on our model tree (0.1, 0.2, and 0.3). The transition probabilities are

0.919 0.018 0.056 0.006 0.851 0.035 0.100 0.011
0.024 0.934 0.012 0.029 0.047 0.876 0.023 0.052
P(0.10) = 0.113 0.018 0.863 0.006 P(0.20) = 0.201 0.035 0.750 0.011

0.025 0.086 0.012 0.877 0.047 0.156 0.023 0.771

0.795 0.051 0.135 0.017
0.069 0.824 0.034 0.071
0.270 0.051 0.659 0.017
0.069 0.214 0.034 0.681

P(0.30) =

Instead of drawing exponential random variables, and generating the process continuously across the entire
tree, our simulation jumps from node to node on the tree. First, we generate the nucleotide at the root of
the tree (the first split leading to all four taxa) by drawing from the stationary distribution. Then, we use
the transition probabilities to simulate from one end to the other of each branch on the tree. We start from
the root of the tree, and simulate up the tree to progressively higher branches until we have simulated a
nucleotide at each tip of the tree.

2.4 Method 4

The last method we will discuss involves calculating the probability of each possible pattern of nucleotides
that we could observe at the tips of the tree. There are four tips, so there are 4* = 256 possible patterns
of nucleotides we could observe. We use the formula for the likelihood, discussed in the first section, to
calculate the probability (likelihood) of each pattern.

We could quickly simulate the data at one site (column) in an alignment by generating one uniform
random number on the interval (0,1). We would first decide which pattern would result from a particular
random number by tabulating 256 intervals. For example, we might decide that if the uniform random
number is between 0 and 0.199465, that the pattern AAAA is the result; that if the uniform random number is
between 0.199465 and 0.20365 that the pattern AAAC results; that if the uniform random number is between
0.20365 and 0.218361 that the pattern AAAG results; and so on. These intervals are calculated directly from
the numbers in Table 2. (If you do not see how this was done, here is a hint: 0.199465 + 0.004185 = 0.20365
and 0.199465 + 0.004185 4 0.014711 = 0.218361.)
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This method can work well when the number of tips on the tree is small, keeping the number of possible
patterns manageable. However, when the number of tips gets to be about 8 or 9, the number of possible
patterns becomes too large to make this method a reasonable one for simulating data.
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Table 2: Probabilities of individual sites. The probabilities of all 256 site patterns when simulated
on the tree of Figure 4 under the HKY85 model of nucleotide substitution. The nucleotides for the site
patterns are ordered from left to right (on the tree from Figure 4). The probabilities of all 256 site patterns
are listed in Table 2. These probabilities were calculated on the tree of Figure 4 under the HKY85 model of
substitution using our usual parameterization for the HK'Y85 model.

Pattern Prob. Pattern Prob. Pattern Prob. Pattern Prob.
AAAA 0.199465 AGAA 0.014711 CAAA 0.018317 CGAA 0.001490
AAAC 0.004185 AGAC 0.000725 CAAC 0.000628 CGAC 0.000210
AAAG 0.014711 AGAG 0.019868 CAAG 0.001490 CGAG 0.002878
AAAT 0.001395 AGAT 0.000242 CAAT 0.000166 CGAT 0.000048
AACA 0.009075 AGCA 0.000843 CACA 0.005277 CGCA 0.000669
AACC 0.000703 AGCC 0.000315 CACC 0.004524 CGCC 0.002262
AACG 0.000843 AGCG 0.002202 CACG 0.000669 CGCG 0.002304
AACT 0.000121 AGCT 0.000048 CACT 0.000375 CGCT 0.000188
AAGA 0.028625 AGGA 0.005985 CAGA 0.003304 CGGA 0.001065
AAGC 0.000702 AGGC 0.000755 CAGC 0.000210 CGGC 0.000209
AAGG 0.005985 AGGG 0.032738 CAGG 0.001065 CGGG 0.006655
AAGT 0.000234 AGGT 0.000252 CAGT 0.000048 CGGT 0.000059
AATA 0.003025 AGTA 0.000281 CATA 0.000959 CGTA 0.000120
AATC 0.000121 AGTC 0.000048 CATC 0.000360 CGTC 0.000180
AATG 0.000281 AGTG 0.000734 CATG 0.000120 CGTG 0.000420
AATT 0.000154 AGTT 0.000073 CATT 0.000404 CGTT 0.000202
ACAA 0.004185 ATAA 0.001395 CCAA 0.000628 CTAA 0.000166
ACAC 0.005482 ATAC 0.000350 CCAC 0.009592 CTAC 0.000415
ACAG 0.000725 ATAG 0.000242 CCAG 0.000210 CTAG 0.000048
ACAT 0.000350 ATAT 0.001594 CCAT 0.000415 CTAT 0.001214
ACCA 0.000703 ATCA 0.000121 CCCA 0.004524 CTCA 0.000375
ACCC 0.019527 ATCC 0.000752 CcccC 0.167489 CTCC 0.005866
ACCG 0.000315 ATCG 0.000048 CCCG 0.002262 CTCG 0.000188
ACCT 0.000752 ATCT 0.001546 CCCT 0.005866 CTCT 0.007452
ACGA 0.000702 ATGA 0.000234 CCGA 0.000210 CTGA 0.000048
ACGC 0.001837 ATGC 0.000116 CCGC 0.004796 CTGC 0.000208
ACGG 0.000755 ATGG 0.000252 CCGG 0.000209 CTGG 0.000059
ACGT 0.000116 ATGT 0.000535 CCGT 0.000208 CTGT 0.000607
ACTA 0.000121 ATTA 0.000154 CCTA 0.000360 CTTA 0.000404
ACTC 0.001781 ATTC 0.000517 CCTC 0.011625 CTTC 0.001716
ACTG 0.000048 ATTG 0.000073 CCTG 0.000180 CTTG 0.000202
ACTT 0.000517 ATTT 0.004711 CCTT 0.001716 CTTT 0.013873
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Table 2: Probabilities of individual sites, continued.

Pattern Prob. Pattern Prob. Pattern Prob. Pattern Prob.
GAAA 0.045565 GGAA 0.005060 TAAA 0.006106 TGAA 0.000497
GAAC 0.001004 GGAC 0.000453 TAAC 0.000166 TGAC 0.000048
GAAG 0.005060 GGAG 0.017648 TAAG 0.000497 TGAG 0.000959
GAAT 0.000335 GGAT 0.000151 TAAT 0.000099 TGAT 0.000038
GACA 0.002514 GGCA 0.000532 TACA 0.000959 TGCA 0.000120
GACC 0.000315 GGCC 0.000194 TACC 0.000548 TGCC 0.000274
GACG 0.000532 GGCG 0.002904 TACG 0.000120 TGCG 0.000420
GACT 0.000048 GGCT 0.000036 TACT 0.000215 TGCT 0.000108
GAGA 0.014437 GGGA 0.008240 TAGA 0.001101 TGGA 0.000355
GAGC 0.000476 GGGC 0.001251 TAGC 0.000048 TGGC 0.000059
GAGG 0.008240 GGGG 0.056794 TAGG 0.000355 TGGG 0.002218
GAGT 0.000159 GGGT 0.000417 TAGT 0.000038 TGGT 0.000030
GATA 0.000838 GGTA 0.000177 TATA 0.001119 TGTA 0.000143
GATC 0.000048 GGTC 0.000036 TATC 0.000231 TGTC 0.000116
GATG 0.000177 GGTG 0.000968 TATG 0.000143 TGTG 0.000488
GATT 0.000073 GGTT 0.000040 TATT 0.000893 TGTT 0.000447
GCAA 0.001004 GTAA 0.000335 TCAA 0.000166 TTAA 0.000099
GCAC 0.001837 GTAC 0.000116 TCAC 0.001389 TTAC 0.000240
GCAG 0.000453 GTAG 0.000151 TCAG 0.000048 TTAG 0.000038
GCAT 0.000116 GTAT 0.000535 TCAT 0.000240 TTAT 0.002009
GCCA 0.000315 GTCA 0.000048 TCCA 0.000548 TTCA 0.000215
GCCC 0.009764 GTCC 0.000376 TCCC 0.019456 TTCC 0.001275
GCCG 0.000194 GTCG 0.000036 TCCG 0.000274 TTCG 0.000108
GCCT 0.000376 GTCT 0.000773 TCCT 0.001275 TTCT 0.006924
GCGA 0.000476 GTGA 0.000159 TCGA 0.000048 TTGA 0.000038
GCGC 0.001823 GTGC 0.000117 TCGC 0.000694 TTGC 0.000120
GCGG 0.001251 GTGG 0.000417 TCGG 0.000059 TTGG 0.000030
GCGT 0.000117 GTGT 0.000530 TCGT 0.000120 TTGT 0.001005
GCTA 0.000048 GTTA 0.000073 TCTA 0.000231 TTTA 0.000893
GCTC 0.000891 GTTC 0.000258 TCTC 0.004935 TTTC 0.003240
GCTG 0.000036 GTTG 0.000040 TCTG 0.000116 TTTG 0.000447
GCTT 0.000258 GTTT 0.002355 TCTT 0.003240 TTTT 0.031522
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