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Evolutionary applications of genomic data



Genomic data

Model Formulation

Competing models

Model-based analyses



- Adaptive molecular evolution
- Codon substitution and analysis of natural selection

- Divergence time estimation and biogeographic analysis
- Phylogenetic inference 
- Inferring species boundaries (aka species delimitation)

� , but they are important because
models are how we communicate our knowledge 
to a statistical apparatus

� All models are flawed...

- Demographic inference 

Evolutionary applications of genomic data:



� Decisions/choices we make about model formulation

� Recognizing the subjectivity of model formulation
      itself when making inferences
� Decisions when applying to empirical data 
(e.g., all the data, subset of data, what subset of data)  

what I’ll emphasize:

Evolutionary applications of genomic data



Evolutionary applications of model-based analyses:

(i) Inferring species boundaries (aka species delimitation)

(iii) Biogeographic study

(iv) Phylogeography

(ii) Phylogenetic inference (and beyond the species tree)

(v) Adaptive evolution



Evolutionary applications of model-based analyses:

(i) Inferring species boundaries (aka species delimitation)

(iii) Biogeographic study

(iv) Phylogeography

(ii) Phylogenetic inference (and beyond the species tree)

(v) Adaptive evolution

Laura S. Kubatko and
L. Lacey Knowles

Species Tree Inference

30% off
with code P321 at 
press.princeton.edu



Model-based approaches for phylogeographic inference

Discussion points:

• Species-specific expectations of genetic variation
(e.g.. trait-based hypotheses, spatially explicit coalescent models, etc.)

• Concordance versus discord among species in communities 
(i.e.. lessons from comparative phylogeography)

• Generic versus informed models

• Why models are important



Avise 1992

Classics in phylogeography

vicariant history of population separation

Why the transition from describing patterns of genetic variation 
  to understanding process requires model-based approach

Concordance reflects a common



Avise 1992Avise 1992

By looking only at the gene trees, 
it isn’t clear how the differences in gene tree depths 

should be interpreted!

The data may be consistent with a shared response to a specific geologic 
event, despite differing gene tree depths among taxa? Or maybe not?



Assess statistically how much of a difference in the depths of the gene trees would 
still be consistent with the same geologic event based on the timing of divergence

q1

T

Present

m

qA

q2

Expectation of T is based on the 
geologic event (i.e., sea level 
change) – that is, prediction 
based on information that is 

independent of the genetic data

To test for shared vicariant history of the coastal community:



In the past, the central focus was on the ‘phylo’ component

PHYLOgeography

grasshopper haplotypes across populations 
(color coded by the mountain top where 
individual was collected)

Map of Rocky Mountains

MT

WYID

Use of gene trees predominated and genetic 
variation across populations described by:

step 1: reconstruct a gene tree

step 2: compare the relationships among 
mtDNA sequences/haplotypes to the 
geographic distribution of haplotypes



Knowles & Carstens (2007) Evolution 61:477

M. oregonensis

But different loci have different gene trees
Phylogenetic relationships among populations (i.e., 
what’s the underlying geographic history of divergence)?



Knowles & Carstens (2007) Evolution 61:477

M. oregonensis

Different processes can produce similar genetic patterns

Recent isolation or migration?

FST = 0.15



Interbreeding between Neanderthals and humans?

• What are two bits of evidence for 
no gene flow based on this tree?

Hypothesis: humans replaced Neanderthals without 
gene flow between the separate species

Nordberg

Problem with interpreting gene tree as evidence of 
“divergence with no gene flow” 



Interbreeding between Neanderthals and humans?

• Model based test of the hypothesis: what’s the 
probability that this gene tree is compatible with 
ancient gene flow between humans and Neanderthal

Nordberg

q1
m

qA

q2

(Bayesian program IM) 

Gene divergence

Modern humans Neanderthal

Result: yes, tree is compatible; does this mean there was gene flow?
• Not necessarily because with single gene not a lot of power to 
evaluate the hypothesis



Equating a gene tree (or network) with a species’ history is not 
appropriate for making inferences about evolutionary processes

• no measure of the uncertainty/support surrounding hypotheses or 
evaluating competing hypotheses

• no framework for incorporate additional data (e.g., geologic or ecological information) 

• inherent lack of power when individual loci analyzed separately, and 
      discordance among loci is uninterpretable

• allopatric fragmentation
      (clade level 3:4)

• range expansion
      (clade level 2:1 and 4:7)  

• restricted gene flow with isolation   
    by distance(clade level 4:3)  

• widespread gene flow?

• inferred processes may (or may not) be accurate because different processes can 
produce a similar pattern in genetic data and gene trees may differ across loci

Without a model:



t2

t1
qA1

qA2 a qA2 b

q1 q2 q3 q4

m

Understanding historical process necessitates model-based approaches

• accommodate and make full use of 
multilocus data (individual gene trees 
differ so trying to interpret their patterns 
would lead you to many different stories)

Explicit model of a 
   species’ history

• test alternative hypotheses/models (e.g., distinguish between a 
 hierarchical vicariant divergence model 

• estimate evolutionary parameters 
(e.g., population size, migration rates, divergence times, or demographic 
changes like expansions or bottlenecks, the geographic coordinates of the 
ancestral population)

t2

t1
qA1

qA2 a qA2 bm
t3

t1
q1,2,3,4

q2,3,4

q3,4m t2

versus a stepping-stone 
colonization model, or isolation by distance)



Coupled genetic and ecological-
niche models to test hypotheses 

about ancestral refuges

Knowles et al. 2007 Current Biology 17:1-7.

• Incorporate additional non-genetic sources information to 
inform our choice of models for testing hypotheses

Projections of current distribution

Projections of past distribution
21,000 years ago

(based on 19 bioclimatic variables;
analyzed with MAXENT)



Knowles et al. 2007 Current Biology 17:1-7.

 

With sequence data from multiple loci, we could reject the fragmentation 
of a single refugial population, suggesting divergence among 
multiple refugia promoted divergence.

Coupled genetic and ecological-niche model:



There are many different reasons why it is desirable to 
combine genetic data with other types of  information 

(e.g., geographic or distributional data, ecological 
information, etc)



Why is it desirable to combine genetic data with other 
types of information?

Capture biologically reality!

Likelihood surface of location of source population during expansion (He et al. 2017) 
based on allele frequency gradients, represented by Ψ-statistics (Peter & Slatkin 2013) 

• Direction and location of 
ancestral source of expanding 
population differs between 
Euclidean and resistance 
distance (He et al. 2017)

• resistance distance (based on 
underlying environmental setting)• Euclidean distance

He et al. 2017. Inferring the geographic origin of a range expansion: latitudinal and longitudinal 
coordinates inferred from genomic data in an ABC framework with the program X-ORIGIN. Mol. Ecol. 
26:6908-6920. DOI: 10.1111/mec.14380



Use genetic data to corroborate inferences based on 
other data types

ENMs do not provide 
precise location of 

Pleistocene refuge for 
hickory trees

Inferred likelihood of geographic coordinates of 
ancestral refugia population – this location 
corresponds to a macrofossil of the hickory species

Bemmels JB, Knowles LL, Dick CW (2019) Genomic evidence of survival near ice 
sheet margins for some, but not all, North American trees. PNAS 116:8431-8436.



Statistical inference in phylogeography:

Need to define a model

To see how variation in the parameters (e.g., mutation 
rates, migration rates, selection coefficients) leads to 
specific patterns of genetic variation (i.e., patterns of 
variation among DNA sequences, among SNPs, etc.)



How do we decide upon a model*:

* All models are simplifications, and vary in their 
relative degree of abstraction

• informed from information independent of the genetic data itself 
     – that is, a specific biological narrative motivates the model

• models informed by genetic data

• generic models



Bemmels et al. 2019 PNAS 116:8431-8436

Expansion model used because of known displacement of 
hickory trees from current distribution by glacial ice sheet.

Inferred geographic coordinates of source of 
expansion, where the geographic coordinate 
is a parameter in the model (inferred using 
ABC; see He et al. 2017. Inferring the geographic origin of a 
range expansion: latitudinal and longitudinal coordinates inferred 
from genomic data in an ABC framework with the program X-ORIGIN. 
Mol. Ecol. 26:6908-6920. DOI: 10.1111/mec.14380



Pelletier & Carstens (2014 Mol. Ecol.)

Generic models in phylogeography

Tests of 142 objectively identified models (e.g., program like PHRAPL) 

� PHRAPL can create hundreds of possible histories that have a mixture 
of gene flow, population subdivision, and/or population size differences 
and compare these models using AIC (O’Meara)



Pelletier & Carstens (2014 Mol. Ecol.)

Tests of 142 objectively identified models 

Statistical procedures themselves may seem to 
provide a legitimacy to modeling approach – the 
advocacy of objective models in phylogeography

• generic models

Model choice in phylogeography: generic versus informed 



Pelletier & Carstens (2014 Mol. Ecol.)

Tests of 142 objectively identified models 

• generic models

Model choice in phylogeography: generic versus informed 



Pelletier & Carstens (2014 Mol. Ecol.)

Tests of 142 objectively identified models 

• generic models

Model choice in phylogeography: generic versus informed 



Pelletier & Carstens (2014 Mol. Ecol.)The answer is model 1023! 

Model choice in phylogeography: generic versus informed 



Biological insights depend on the questions we (the scientist) ask! 

Pelletier & Carstens (2014 Mol. Ecol.)

� Should we expect (or want) or computer 
programs to define the questions we ask!?!

The answer is:

The answer is model 1023! 



� Model formulation is a way of communicating our expert    
   knowledge to statistical apparatus to test hypotheses



1500

today

Hypsiboas albomarginatus

H. faber
H. semilineatus

Forecasting spatial patterns of diversity in poorly 
explored, highly threatened ecosystems

Carnaval et al. 2009. Science

Model-based approach:
Directly model historical processes through a combination of 

ecological-niche models  under paleoclimates and genetic analyses, 
discovered a central region in the Brazilian Atlantic forest that served 

as a biodiversity refuge during climatic extremes.

Model-based approach:



Now

21 kya

6 kya

Model species distributions under current conditions and climatic 
extremes (based on climatic niches with MAXENT)

Carnaval et al. 2009. Science



Current

21 kya

6 kya

Predicted 
region of 
stability

Carnaval et al. 2009. Science

Maps of stable and unstable areas 
raise specific hypotheses about 

regional differences in persistence 
and hence diversity, which lead to 
phylogeographic predictions that 
can be tested with molecular data 

proposed
refugia

Model species distributions under current conditions and climatic 
extremes (based on climatic niches with MAXENT)



recent colonization

Population 1 Population 2

(20 kybp)
     

21 kybp

6 kybp

21 kybp

long-term persistence

Population 1 Population 2

(120 kybp –
     1.2 Mybp)

(ii) assemblage-scale, long-term 
persistence of populations 
in isolated refugial areas
 (i.e., temporally stable regions)

(i) simultaneous, multi-species colonization
 of unstable areas from adjacent refugial 
 populations since the LGM

Carnaval et al. 2009. Science

Different demographic scenarios motivated by stable/unstable areas:

Results support community responses for both 
models using hierarchical Approximate 
Bayesian Computation:



Different ways to model population expansion:
 (i) Model as population size change with no spatial aspect of expansion
      (e.g., Brazilian Atlantic forest areas of instability associated with  
       recent expansion)
(ii) Model expansion process across landscape explicitly

* All models are simplifications, but they vary in their 
relative degree of abstraction
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iDDC: Generate species-specific expectations for patterns of genetic variation

integrative 
Distributional
Demographic 
Coalescent 
modeling

He, Edwards & Knowles, Evolution 2013

Tests of hypotheses/models
  using ABC

Distributional model
(i.e., ecological niche model) with 

predictions on probability of occurrence 
across the landscape

Habitat suitability 
scores

Demographic model 
informed by habitat 

suitabilities

K(m)

Carrying capacity: ki Spatially-explicit coalescent 
simulations based on 
demographic model

SPLATCHE2

Gene coalescence 
across the landscape

also Knowles & Serrano Mol. Ecol., 2010



low habitat 
suitability

high habitat 
suitability

SPECIES-SPECIFIC 
Spatially explicit 

quantitative information 
about probabilities of 
occurrence based on 

habitat suitability

Habitat 
suitability 

scores

iDDC: integrative Distributional, Demographic, Coalescent modeling



K(m)

low K high K
High mlow m

high habitat 
suitability

low habitat 
suitability

� carrying capacity: k
� migration rate: m
� logistic growth rate: r

iDDC: integrative Distributional, Demographic, Coalescent modeling

Spatially explicit 
probabilities of occurrence based on 

habitat suitability

SPECIES-SPECIFIC 
Spatially explicit 

demographic model



e.g.: SPECIES-SPECIFIC Demographic model:

Currat et al. 2004

Nti  m
kj
Σk

- carrying capacity: ki

- # of emigrants leaving deme i: Nti m

- # of immigrants entering deme j: 
 Σk

kj

At each generation:
-the population density, Nti, of each deme is logistically regulated
-followed by a migration step
-the population densities and number of immigrants (Nti and m) 
   are stored and used during the genetic simulations 



N

S
W

E  

time

present

past

�spatially-explicit genealogies to generate genetic patterns
-at each generation (looking backwards in time), genes have probability of:

  (i) staying in the same deme,
  (ii) move to a different deme, or
  (iii) coalesce with another gene lineage 

(depending upon the population densities and migration rates 
from the demographic model, which are specified by ENMs)

iDDC: integrative Distributional, Demographic, Coalescent modeling

Suggested software: Quesztal package (Becheler and Knowles 2022)



Under different demographic parameters (e.g., different k and m), same set 
of sampled populations would have different coalescent histories 

W E  

N

S

N

S W E  

because of different probabilities to:
  (i) stay in the same deme,
  (ii) move to a different deme, or
  (iii) coalesce with another gene lineage 

(iv) Mutations accumulate along 
the branches of the genealogy 
according to a Poisson process 
with rate μt

� Simulate predicted patterns of genetic variation for set of 
parameters under the model 



low K high K
High m and rlow m and r

high habitat 
suitability

low habitat 
suitability

Species-distribution model (SDM)  
generates predictions on probability 
of occurrence across the landscape

Spatially explicit 
demographic model
(localized population 

densities, migration and 
growth rates)

Spatially explicit coalescent 
model to generate predicted 

patterns of genetic variation for 
the empirically sampled 

population localities

Nti m
kj
Σk

N

S W E  
tim

e
present

past

K(m)

Habitat suitability 
scores

Gene coalescence 
across the landscape

Carrying capacity: ki 



Map of the sky islands above 2000m

� Sequenced 6 nuclear loci in 114 individuals of 
sampled populations (in color) across the species range



iDDC : Model Selection & Parameter Estimation using 
Approximate Bayesian Computation (ABC)

Advantages:  
• computational efficiency compared to ML methods
• allow for complex models

Summary 
statistics

(simulated data)

Model

Summary 
statistics

empirical data
Estimated 

parameters

See Beaumont et al. 2002

Suggested software: abctoolbox (Wegmann et al. 2010)

We can identify sets of parameters for 
specific models that produce simulated 
data that matches the empirical data.

Simulated 
datasets



M. oregonensis
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� grasshoppers are flightless habitat specialists 
restricted to montane meadows

19 bioclimatic variables used in modeling distributions

ENM based on current environmental data

Population connectivity determined by 
contemporary sky island distribution 

Colonization of present sky island 
distribution from glacial refugiaversus



iDDC tests of drivers of divergence

Choose 
model

Setting 
priors for 

parameters
(K and m)

Simulations: 
demographic 

-> 
Coalescent -

> DNA

Calculate 
summary 
statistics

Retain 
simulations 

whose SS are 
close to 

empirical 
ones

Model 
Selection 

and 
parameter 
estimation

population connectivity 
determined by contemporary sky 

island distribution 

Colonization of present sky 
island distribution from 

glacial refugia

6 anonymous nuclear loci from 114 individuals sampled 
across the range of M. oregonensis 





M. oregonensis

Model tests based on comparing 
marginal likelihoods:

Patterns of genetic variation reflect:
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(i) population connectivity determined by 
contemporary sky island distribution 

(ii) a colonization history from glacial 
refugia to present sky island distribution

Knowles LL, Massatti R (2017) Distributional shifts – not geographic isolation – 
as a probable driver of montane species divergence. Ecography 40:1475-1485. 



Edwards, Keogh, Knowles (2012) Mol. Ecol.

Linear distribution of populations 
along SW coast suggests 

isolation-by-distance may be 
important in structuring patterns 

of genetic variation

Explicit modeling of movement across landscape in 
phylogeography models



Edwards, Keogh, Knowles (2012) Mol. Ecol.

But species vary in their specialization to sand-dunes, 
suggesting habitat differences across space may be important 

in structuring patterns of genetic variation



Past distribution (based 
on paleoclimatic data 

21,000 yrs bp ) 

Current 
distribution

(contemporary 
climatic data) 

Climatic conditions have changed over time

(based on ecological-niche models,
   ENMs, with MAXENT) He, Edwards & Knowles (2013) Evolution

Diversification coincided with 
Pleistocene glacial cycles

Edwards, Keogh, Knowles
(2012) Mol. Ecol.

Habitat suitability



Edwards, Keogh, Knowles (2012) Mol. Ecol.

Climate-induced distributional shifts may 
structure genetic variation, given 

differences in stability of habitat over time

stable
unstable

Edwards et al. (2012) Mol. Ecol. 



Incorporate history of shifts in species distribution in explicit 
spatial framework

Colonization by dynamic niche

•Start from LGM refugia
•Colonize with changing 
layers of ENM

Past Present

Transforming hypotheses into testable phylogeographic models:

Dynamic 
ENM



integrative 
Distributional
Demographic 
Coalescent 
modeling Distributional model

(i.e., ecological niche model)

Demographic model

Coalescent model

iDDC:

� geographic isolation alone (IBD)

Hypotheses

� population connectivity determined by current 
landscape, as measured from ENM

� population connectivity determined by 
distributional shifts associated with climate change, 
as modeled by current and paleoclimatic data

He, Edwards & Knowles (2013) Evolution

Spatially explicit coalescent model to capture movement across space

24 anonymous nuclear loci from 89 individuals sampled 
across the range of Lerista (shown by dots)



iDDC modeling: IBD

cENM

dENM

sdENM

Past Current

Suitability

High

Low

Aspatial Coalescence

Aspatial Coalescence

Spatially Explicit Demographic Modeling

Climate soil

Coalescent Simulation

IBD

cENM

dENM

sdENM

Past Current

Suitability

High

Low

Aspatial Coalescence

Aspatial Coalescence

Spatially Explicit Demographic Modeling

Climate soil

Coalescent Simulation

IBD

cENM

dENM

sdENM

Past Current

Suitability

High

Low

Aspatial Coalescence

Aspatial Coalescence

Spatially Explicit Demographic Modeling

Climate soil

Coalescent Simulation

low K high K
high mlow m

IBD

cENM

dENM

sdENM

Past Current

Suitability

High

Low

Aspatial Coalescence

Aspatial Coalescence

Spatially Explicit Demographic Modeling

Climate soil

Coalescent Simulation

Model Selection using 
Approximate Bayesian 

Computation (ABC)

We can identify sets of parameters for 
specific models that produce simulated 
data that matches the empirical data.

Generate lots of simulated data sets under 
each model (IBD, cENM, dENM).

He, Edwards & Knowles (2013) Evolution



Choose 
model

Setting priors 
for 

parameters

Simulations: 
demographic 

-> 
Coalescent -

> DNA

Calculate 
summary 
statistics

Retain 
simulations 

whose SS are 
close to 

empirical 
ones

Model 
Selection

Colonization by dynamic ENM
>> Isolation by contemporary ENM
> Isolation by distance

Comparison of Bayes factor showed that

Tests of hypotheses/models using ABC

- Start from LGM refugia
- Colonize with changing layers of ENM

Past Present
Dynamic 

ENM He, Edwards & Knowles (2013) Evolution



• Flexible (expand to multiple species)
• Complex history
• Test of different historical processes
• Model verifications for ABC, e.g.:
 

Advantages of iDDC:

- Is the model capable of generating the observed data: the likelihood of the 
empirical data can be compared with the likelihoods of other retained simulations (a p -
value of 0 means all the simulations had a higher likelihood than the observed data)  

- Compute the coefficient of variation of each parameter explained by each PLSs of the 
summary statistics as an indicator for the power of the estimation

- Accuracy of parameter estimation in the most supported model evaluate 
using 1000 PODs  generated from prior distributions of the parameters

• iDDC is computationally intensive
 

Challenges:



� Decisions/choices we make about model formulation

� Recognizing the subjectivity of model formulation
      itself when making inferences
� Decisions when applying to empirical data 
(e.g., all the data, subset of data, what subset of data)  

what I’ll emphasize:

Evolutionary applications of genomic data

� Decide how to extract 
information from genetic data



Summary statistics of genetic variation will have different values 
depending upon the biogeographic and demographic processes 
generating the genetic data

Summaries of genetic variation

Population growth

Mismatch distribution 
(Rogers & Harpending 1992)

Population subdivision

Tajima’s D > 0

Mismatch distribution 
(Rogers & Harpending 1992)

Tajima’s D < 0

q, pi

q, pi



Þ use of summary statistic (sacrifices information
     content for simplification and ease)
• observed quantities are compared to expectations 
 

Þ calculate full likelihood of the sequence data 
(computationally demanding, and may not work for 
complex models, but makes full use of the data)

Decisions about how to extract information from 
genetic data



Carstens & Knowles 2007, Mol. Ecol. 16:619-27.

Understanding the effects of rapid climate change on species diversity:
 

What is the timing of divergence?
� Pleistocene versus pre-Pleistocene?
� Glacial versus inter-glacial?

Did the frequent and repeated shifts in species distribution in response 
to the Pleistocene glacial cycles promote or inhibit divergence?



Carstens & Knowles 2007, Mol. Ecol. 16:619-27.

q1

Species divergence

m

qA

q2

(Bayesian program IM) 

36 M. oregonensis23 M. montanus

• Use multilocus data and a coalescent framework 
to estimate the timing of divergence

Gene divergence

Timing of 
divergence?



Precise estimate of T suggests species diverged during a glacial period

Multilocus, coalescent 
approach

Carstens & Knowles 2007, Mol. Ecol. 16:619-27.

Single locus,
coalescent approach

glacial period
interglacial period

4.9 x 105 to 2.0 x 106

estimate from average 
mtDNA genetic distance:

*same mutation rate used in the 
    different approaches



Simulation conditions 

Verified the accuracy of the speciation model given   
  the data (only 6 loci)

q1

T

m

qA

q2

M. oregonensis

(estimates may be compromised when the complexity of the 
model exceeds the information content of the genetic data)

• Simulate genetic data under models of evolution matching the empirical grasshopper 
data and ask whether the inferred divergence time matches the divergence time used
                 to simulate the data

Carstens & Knowles 2007, Mol. Ecol. 16:619-27.



How do we decide upon a model*:

* All models are simplifications, and vary in the degree of their 
relative degree of abstraction

• informed from information independent of the genetic data itself 
     – that is, a specific biological narrative motivates the model

• models informed by the genetic data (…but be careful not to use same data twice)

• arbitrary/generic models
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� Paleoclimatic data used to model 
past species distributions

(21 kya)

Sometimes ENMs not sufficient 
to define model
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0.88 – 0.98 

0.10 – 0.20 

0.39 – 0.49 

0.78 – 0.88 

0.59 – 0.69 

Glaciated 

� Projected distribution from MAXENT based 
on contemporary bioclimatic variables    

(e.g., max and minimum temperatures and 
precipitation, etc)

Informing model based on preliminary 
tests based on genetic data

Lanier et al. (2015) Mol. Ecol. 24:3688-3705 
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� Informing model based on 
preliminary tests of genetic data
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Procrustes analysis



Fig. 2 Hypothesized demographic history of pika populations used in FASTSIMCOAL2 
analyses. Pika ancestors diverged (Tpns generations ago) into ancestral populations of 
Pika Camp (Np_anc) and the other populations (Nns). Later, the divergence
into southern (Ns_anc) and northern refugia (Nn_anc) occurred, and populations 
experienced recent expansions and exchanged migrants. The estimates of these 
parameters are listed in Table 4.

10,892 variable SNPs

To better understand the historical demographic trends for pika populations, 
we estimated divergence time, gene flow and population size changes 
among different populations using the site-frequency spectrum (SFS) using 
FastSimCoal.

Lanier et al. (2015) Mol. Ecol. 24:3688-3705 



• Our results indicate that contemporary factors alone (i.e., current habitat continuity 
and glacial corridors) are not sufficient to explain connectivity among populations
of Collared Pikas across their range

• Instead, the results provide strong support for the predominance of three divergent 
lineages, likely separated in different Pleistocene refugia, with population expansion 
among lineages predating the Last Glacial Maximum

Lanier HC, Massatti R, He Q, Olson LE, Knowles LL (2015) Colonization 
from divergent ancestors: glaciation signatures on contemporary 
patterns of genetic variation in Collared Pikas (Ochotona collaris). Mol. 
Ecol. 24:3688-3705.



In practice we can never completely model the 
evolutionary processes, all we can hope for is that 
we have captured the important features.

(i.e., YOUR knowledge about a biological 
system is key!)

How do we know if we used the “right” model?





• Accounting for species-specific traits
• Spatially explicit coalescent models
• Comparative analyses of genetic variation 

across species

Evolutionary applications of genomic data





• Accounting for species-specific traits
• Spatially explicit coalescent models
• Comparative analyses of genetic variation 

across species

Evolutionary applications of genomic data



� Decisions/choices we make about model formulation

� Recognizing the subjectivity of model formulation
      itself when making inferences
� Decisions when applying to empirical data 
(e.g., all the data, subset of data, what subset of data)  

What I’ll emphasize:

Evolutionary applications of genomic data



Does microhabitat differences affect species responses 
to climate change?

� start with descriptive analysis to explore 
hypotheses

� follow-up with spatially explicit models to test 
hypotheses about why patterns of genetic variation 
differ among species (i.e., generate species-specific 
patterns of genetic variation)
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Carex chalciolepis

Carex nova

Massatti & Knowles 
(2014  Evolution)

Sky island community responses to climate change similarly 
(based on patterns of genetic differentiation)

Rocky Mountains



Carex chalciolepis
� co-distributed, abundant taxa with similar 

natural histories and dispersal abilities

¯75 Kilometers

Wyoming

Colorado

New Mexico

¯75 Kilometers

Wyoming

Colorado

New Mexico

� so similar that ENMs project 
very similar past distributions

C. nova

Sky island communities: responses to climate change



Carex chalciolepis
Carex nova

inhabits slopes and 
ridges

restricted to wetlands 

� taxa differ in microhabitats



� similar past population connections predicted 
for co-distributed taxa from ENMs

¯75 Kilometers

Wyoming

Colorado

New Mexico

projected past distribution

Interactive Geology Project, University of Colorado Boulder: igp.colorado.edu

� glaciers in drainages would have displaced 
populations of wetland specialist

If microhabitat matters…

Given that ecological niche models (ENMs) are similar 
between species (both present and during LGM)…

why would we predict discord in patterns of 
genetic variation between the plant species?



Why should microhabitat matter for sky island inhabitants?

� similar past population connections predicted 
for co-distributed taxa from ENMs

� distances separating populations may have been considerable greater 
in the past – but only in the wetland specialist

If microhabitat matters…

¯75 Kilometers

Wyoming

Colorado

New Mexico

projected past distribution

Interactive Geology Project, University of Colorado Boulder: igp.colorado.edu
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� sampled population pairs of 
C. nova and C. chalciolepis 
from different mountain ranges

� SNPs from over 
22,000 loci (RADseq)
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1. Sky island communities: microhabitat differences and   
        responses to climate change

Massatti and Knowles, Evolution (in press)



Oso
Liz

ar
d H

ea
d

Bl
an

ca

Ki
te

Gu
an
ell
a

So
ut
hw
es
t

So
ut
hw
es
t

So
ut
he
as
t

Ce
nt
ra
l

Ce
nt
ra
l

No
rth

No
rth

Ou
ra
y

La
mp
hie
r

Os
o

Liz
ar
d

C. nova

projected past distribution

� Structure analysis of SNPs from over 22,000 loci

restricted to wetlands



C. nova

projected past distribution

� Structure analysis of SNPs from over 22,000 loci

restricted to wetlands
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C. nova

projected past distribution

� STRUCTURE analysis of SNPs from over 22,000 loci

restricted to wetlands

Massatti and Knowles, Evolution (in press)
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Genomic patterns support predictions of an interaction 
between microhabitat affinity and climate change 

(glaciers are barrier for movement of wetland specialists only)

Carex chalciolepis Carex nova
wetland specialists dry ridges



Genomic patterns support prediction of an interaction 
between microhabitat affinity and climate change 

Carex chalciolepis
Carex nova

Test if observed discordant phylogeographic structure could be 
caused by differences in microhabitat affinity ….

� generate species-specific expectations for patterns of genetic variation
(i.e., glaciers are barrier for movement of wetland specialists only)

Massatti & Knowles (2014) Evolution

wetland specialists dry ridges



iDDC: Generate species-specific expectations for patterns of genetic variation

integrative 
Distributional
Demographic 
Coalescent 
modeling

He, Edwards & Knowles, Evolution 2013

Tests of hypotheses/models
  using ABC

Distributional model
(i.e., ecological niche model) with 

predictions on probability of occurrence 
across the landscape

Habitat suitability 
scores

Demographic model 
informed by habitat 

suitailities

K(m)

Carrying capacity: ki Spatially-explicit coalescent 
simulations based on 
demographic model

SPLATCHE2

Gene coalescence 
across the landscape



Aegean 
archipelago

Carex chalciolepis

Carex nova

� Glaciated areas act as barriers, 
but only in wetland specialist

H: species-specific responses to climate change 

iDDC: Generate species-specific expectations for patterns of genetic variation

So genetic discord between species is not dismissed 
as reflecting idiosyncratic nature of history; genetic 
discord predicted from taxon-specific traits!



iDDC modeling: IBD

cENM

dENM

sdENM

Past Current

Suitability

High

Low

Aspatial Coalescence

Aspatial Coalescence

Spatially Explicit Demographic Modeling

Climate soil

Coalescent Simulation

IBD

cENM

dENM

sdENM

Past Current

Suitability

High

Low

Aspatial Coalescence

Aspatial Coalescence

Spatially Explicit Demographic Modeling

Climate soil

Coalescent Simulation

Model Selection using 
Approximate Bayesian 

Computation (ABC)

We identify sets of parameters for the 
models that produce simulated data 

that match the empirical data.
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Generate lots of simulated data 
sets under each model



Tests of hypotheses/models using ABC

Choose 
model

Setting 
priors for 

parameters
(K and m)

Simulations: 
demographic 
-> Coalescent 

-> DNA

Calculate 
summary 
statistics

Retain 
simulations 

whose SS are 
close to 

empirical 
ones

Parameter 
estimation

Model 
Selection
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4.87 × 10-5 1.38 × 10-4
Carex chalciolepis

1.29 × 10-4 5.68 × 10-6
Carex nova

Barrier Model Permeable Model
Marginal densities:

Bayes factor ~3

Bayes factor ~23

Is the most probable model capable of generating the observed data ?
(compare the L of retained simulated data sets to the L for the empirical data: “P-value”)

(0.84) 

(0.65) (0.97) 

(0.08) 
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5000 simulations closest to empirical data retained for parameter estimation

Massatti & Knowles (2016) Mol. Ecol. 



Refined hypotheses based on taxon-specific traits in 
comparative phylogeography 

Aegean 
archipelago

Carex chalciolepis

Carex nova

� statistical tests of discordant phylogeographic structure that is 
    predicted from differences in taxon-specific traits

� Glaciated areas act as barriers, 
but only in wetland specialist

Massatti & Knowles LL (2014) Microhabitat 
differences impact phylogeographic
concordance of co-distributed species: 
genomic evidence in montane sedges (Carex 
L.) from the Rocky Mountains. Evolution 
68:2833-2846. 



Communities may be characterized by 
species-specific responses to climate change 



Inference based on samples from communities
Neutral loci

� How we use similarity of the association between genes and 
geography across species to test evolutionary hypotheses

� Importance of considering refined-hypotheses based 
on taxon-specific traits



Refined hypotheses based on taxon-specific traits in 
comparative phylogeography 

Soil inhabitants

Aegean 
archipelago

� key to avoid misleading inference

� bias toward tests of the effects of abiotic factors if rely on 
similarity in genetic structure across taxa for hypothesis testing 



Genes and Geography
Neutral loci

Across Species

similarity of the association between genes and 
geography across species – CONCORDANCE – is 
typically used to test evolutionary hypotheses



Avise 1992Avise 1992

Gulf

Atl.

Concordance used in descriptive studies



Species 1 Species 2 Species 3 Species 4

Concordance used in statistical phylogeography

po
st

er
io

r p
ro

ba
bi

lit
y

# of divergence events

Statistically evaluate a parameterized model 
of co-divergence among species using 

hierarchical Approximate Bayesian 
Computation (hABC)



Avise 1992Avise 1992

Biogeographic 
barrier

Gulf

Atl.

Concordance to test hypotheses



Statistical evaluation of a parameterized 
model of co-divergence among species. Resende et al. (in prep)

(A) (B) 

(C) (D) 

(E) (F) 

(H) 

(I) 

(G) Estimate degree of co-divergence 
among species to evaluate 

hypothesized barrier associated with 
floristic provinces in Cerrado

po
st

er
io

r p
ro

ba
bi

lit
y

# of divergence events

concordance is a hyper-parameter in model that is estimated 
from genetic data across multiple species

Concordance to test hypotheses using hABC



Concordance to test hypotheses of co-expansion

Burbrink et al. 2016



Genes and Geography across species

CONCORDANCE
for testing hypotheses 

about evolutionary history 

Biotic component?

� potential for misleading inference by not considering 
both biotic and abiotic components



Oaks et al.  (2012) Evolution

� Inferred the distribution of divergence times 
   among 22 pairs of co-distributed vertebrate taxa

Hypothesis of simultaneous divergence to 
test whether sea-level oscillations during 
the Pleistocene caused diversification

changes in connectivity/isolation of 
islands with sea-level changes (light 

versus dark grey outlines)

Phillipines 
Archipelago

Number of divergence events

po
st

er
io

r p
ro

ba
bi

lit
y

hABC approach

Concordance criteria for hypothesis testing



Performed a suite of simulation-based power analyses

Hypothesis of simultaneous divergence to 
test whether sea-level oscillations during 
the Pleistocene caused diversification

po
st

er
io

r p
ro

ba
bi

lit
y

(Oaks et al., 2013; Oaks, 2014)

biased corrected

Number of divergence events

Should this be interpreted as a rejection of the “species pump” model of 
diversification in which sea-level changes drive divergence?

Concordance criteria for hypothesis testing



Hypothesis of simultaneous divergence to 
test whether sea-level oscillations during 
the Pleistocene caused diversification

(Oaks et al., 2013; Oaks, 2014)

Concordance is arguably too generic of a hypothesis across these 
disparate taxa to test the “species pump” model of divergence.

Phillipines 
Archipelago

Hypothesis of phylogeographic concordance Is TOO generic



hypothesis of phylogeographic concordance

Hypothesis of simultaneous divergence to 
test whether sea-level oscillations during 
the Pleistocene caused diversification

Phillipines 
Archipelago

Generic   Refined 
� a study design that considers taxon attributes



Refined models of phylogeographic concordance to test the “species pump” model

Current dry land
120 m isobath

current dry land
0 to -30 m

-30 to -60 m

-60 to -90 m
-90 to -120 m
below -120 m

AD

MY

TI

SY

NAPAAN

HE SC

AO

DO

Aegean 
archipelago

2 cm

13 species of darkling beetles 
(Coleoptera: Tenebrionidae)

Papadopoulou & Knowles(2015) Mol. Ecol.



� taxa differ in their soil associations 

Aegean 
archipelago

Papadopoulou & Knowles(2015) Mol. Ecol.

2 cm

Soil Sand

Generalists on
both soil & sand

� uniform trophic ecology 
& inherent dispersal abilities

–  stable habitat – disturbed habitat

Ephemerality of sand habitats may supersede 
effects of sea-level connections!



Different degrees of structure of mtDNA gene trees suggestive of differences in habitat stability

Soil – stable habitat generalists
both stable 

and disturbed 
habitats

Sand – disturbed habitat

Northern Islands bathymetrically separated by 95m trench from Southern islands



Soil – stable habitat: R2
adj=0.48, p<<0.001 Sand – disturbed habitat: R2

adj=0.01, p=0.54
  

Degree of lineage sorting correlated with duration of island connections?

Model comparisons in subsequent analyses also identified the relative duration of island 
connection in combination with habitat type as the best predictors of genealogical sorting 
 (in contrast to other explanatory variables such as body size or island size) based on AICs 

Papadopoulou & Knowles (2015) Mol. Ecol. 24: 4252-4268 



Soil – stable habitat

hABC: hierarchical Approximate Bayesian Computation; 
Implemented in dpp-msbayes (Oaks, 2014)

Test of simultaneous divergence

Refined hypothesis for tests of concordance that focus on stable-habitat taxa

Papadopoulou & Knowles (2015) Mol. Ecol. 24: 4252-4268 

By focusing on ecologically equivalent taxa, test of concordance 
supported the species pump model of divergence

2 cm



No evidence for simultaneous divergence

hABC implemented in
dpp-msbayes (Oaks, 2014)

Generic hypotheses of global phylogeographic concordance

Papadopoulou & Knowles (2015) Mol. Ecol. 24: 4252-4268 

Sand

2 cm

Soill



No evidence for simultaneous divergence

Generic hypotheses of global phylogeographic concordance

Papadopoulou & Knowles (2015) Mol. Ecol. 24: 4252-4268 

Sand

2 cm

Soill

Lack of global 
concordance

rejection of species 
pump model of 
divergence ???

Ephemerality of 
sand habitats!



Refined hypotheses based on taxon-specific traits in 
comparative phylogeography 

Soil– stable habitat

Aegean 
archipelago

� refinement of the expectation for concordance is needed for
    concordance itself to be a meaningful metric   

Papadopoulou & Knowles (2016) PNAS

� reduced predictive power of generic hypotheses – their rejection 
leads to inconclusive statements that do not offer particularly 
meaningful insights



Number of divergence events

po
st

er
io

r p
ro

ba
bi

lity
� comparative phylogeographic methods are designed to 
  quantify congruence, rather than gain insights from 
  discordant patterns

Papadopoulou & Knowles (2016) PNAS

- indirectly encourages users to emphasize 
idiosyncratic aspects of history!

� NEED development/application 
of methods for statistical 

evaluation of phylogeographic 
discord as an expectation 

- ad hoc interpretations 
of discordance



� Model formulation is a way of communicating our expert    
   knowledge to statistical apparatus to test hypotheses

Refined hypotheses based on taxon-specific traits in 
comparative phylogeography 



Extent of distributional shifts or rate of climatic change
as determinants of concordant patterns of genetic structure

Knowles et al. (2016) J. Biogeogr.
He et al. (2017) Mol Ecol.

Role of habitat stability in 
structuring genetic variation 

He et al (2013) Evolution

Does microhabitat 
affect responses to 
climate change

Massatti & Knowles (2014, 2016) 
Evolution, Mol. Ecol.

Present versus past distributions 
as drivers of divergence
Knowles & Massatti ( 2017) Ecography

Biological insights:
(i) hypotheses that capture processes structuring genetic variation, and 
(ii) model-based approaches to evaluate statistical support for alternative hypotheses 



Extent of distributional shifts or rate of climatic change
as determinants of concordant patterns of genetic structure

Knowles et al. (2016) J. Biogeogr.
He et al. (2017) Mol Ecol.

Role of habitat stability in 
structuring genetic variation 

He et al (2013) Evolution

Does microhabitat 
affect responses to 
climate change

Massatti & Knowles (2014, 2016) 
Evolution, Mol. Ecol.

Present versus past distributions 
as drivers of divergence
Knowles & Massatti ( 2017) Ecography

Biological insights:
(i) hypotheses that capture processes structuring genetic variation, and 
(ii) model-based approaches to evaluate statistical support for alternative hypotheses 





Evolutionary applications of model-based analyses:

(i)

(iii) Biogeographic study

(iv) Phylogeography

(ii) Phylogenetic inference (and beyond the species tree)

Inferring species boundaries (aka species delimitation)

(v) Adaptive evolution



Little brown bats are widespread in 
North America and were the most 
abundant species in the eastern US 

prior to white nose syndrome 
(WNS), which is caused by 

introduced fungal pathogen

Myotis lucifugus



Dead bats in underground 
hibernation sites  (shown here 
on the floor of a mine)

Others leave hibernating sites 
prematurely, like these dead bats on 
the outer screen of a house < 1 km 
from a hibernation site (note the 
snowy landscape). 

Little brown bats decimated by white nose syndrome (WNS)

Population declines > 90% since introduction 
of fungal pathogen that causes WNS



Survival of the species may 
ultimately depend upon its 

capacity for adaptive change

Myotis lucifugus Giorgia G. Auteri 

� Compare the genetic 
makeup of wild survivors 
and non-survivors of WNS  

to tests for adaptive change 

Auteri GG, Knowles LL (2020) Decimated little brown bat 
population show potential for adaptive change. Scientific 
Reports. 10:3023. doi.org/10.1038/s41598-020-59797-4

https://doi.org/10.1038/s41598-020-59797-4


� RADseq: 14,345 loci , 19,797 SNPs

non-survivor
survivor

Studied geographically isolated population of little brown bats 

WNS arrived in 2014



� 14,345 SNPs and 33 individuals

Evidence of strong genetic drift caused by the massive population losses in little brown bats. 

PCA of survivors of WNS (in blue) 
with non-survivors (in red) 
projected onto the PC axes 



Non-survivors

Survivor

Quantified rate of evolutionary change 
from inferred ancestor 

(using F-model in STRUCTURE)

F = 0.04 
SE ±0.0001

F = 0.0006
SE ± 0.0003

Evidence of strong genetic drift caused by the massive population losses in little brown bats. 



To identify genetic changes among individuals that might have 
contributed to their survival of WNS, as opposed to changes due 
to strong genetic drift,  used an FST-outlier approach

*signature of selection can be detected by levels of genetic differentiation 
at a gene that exceeds background levels across the genome

*

� alternating red and blue mark different genomic scaffolds 



Physiological functions that make immediate sense in an adaptive 
context—deaths from the WNS fungus are a result of too frequent 
arousals from hibernation that causes starvation. 

regulating cellular metabolism;
 has also long been suspected to 
be involved in hibernation 

Links between metabolic demands and survival 

pathways involving cellular metabolism 
and breakdown of fat 



Variation in calls is closely associated with type of prey and the habitat 
bats must navigate, potentially adaptive shifts might result from 
selective pressures related to proficient hunting or prey preferences

regulating cellular metabolism;
 has also long been suspected to 
be involved in hibernation 

Links between metabolic demands and survival 

pathways involving cellular metabolism 
and breakdown of fat 

associated with vocalizations, and 
echolocation in bats



© Steve Byland 

Too soon to claim that the species will be “saved” 
via an evolutionary rescue effect.

Evidence of potentially adaptive evolution in the survivors of little 
brown bats is particularly notable on several fronts: 

http://www.dreamstime.com/Stevebyland_info


� We detected selectively driven divergence, despite strong genetic 
drift caused by the massive population losses in little brown bats. 

© Steve Byland 

Too soon to claim that the species will be “saved” 
via an evolutionary rescue effect.

Evidence of potentially adaptive evolution in the survivors of little 
brown bats is particularly notable on several fronts: 

http://www.dreamstime.com/Stevebyland_info


� We detected selectively driven divergence, despite strong genetic 
drift caused by the massive population losses in little brown bats. 

© Steve Byland 

Too soon to claim that the species will be “saved” 
via an evolutionary rescue effect.

Evidence of potentially adaptive evolution in the survivors of little 
brown bats is particularly notable on several fronts: 

� These evolutionary changes were detected in less than 
three generations since exposure to WNS 

http://www.dreamstime.com/Stevebyland_info


� We detected selectively driven divergence, despite strong genetic 
drift caused by the massive population losses in little brown bats. 

© Steve Byland 

Too soon to claim that the species will be “saved” 
via an evolutionary rescue effect.

Evidence of potentially adaptive evolution in the survivors of little 
brown bats is particularly notable on several fronts: 

� These evolutionary changes were detected in less than 
three generations since exposure to WNS 

� Putatively selected loci and their potential adaptive functions point 
to multifaceted nature of selection (i.e., genes linked to physiological 
and behavioral traits, whose roles vary across habitats of highly 
seasonal environments) 

http://www.dreamstime.com/Stevebyland_info


Evolutionary applications of model-based analyses:

(i)

(iii) Biogeographic study

(iv) Phylogeography

(ii) Phylogenetic inference (and beyond the species tree)

Inferring species boundaries (aka species delimitation)

(v) Adaptive evolution



Species delimitation 
(discovery) 

v v v

v v

v

v

v

v

� Explain the merit/limitations of the 
multispecies coalescent (MSC) to delimitation

� Describe (i) how over-estimation of species 
numbers might occur with applications based 
on the MSC (ii) what determines the degree of 
overestimation 

� Explain the relevance of the speciation 
process to delimitation approaches 

Learning goals:

� Describe applications of the multispecies 
coalescent (MSC) to species delimitation



Hypotheses about species boundaries



Huang & Knowles (2016) Syst. Biol.

5 species

genus Dynastes

1 species

Model-based inference of species boundaries

Statistical evaluation of a 
hypothesized species 
delimitation model



Huang & Knowles (2016) Syst. Biol.

Model-based inference of species boundaries

genus Dynastes

1 recognized species
In South America

5 recognized species
In North America

Probabilities of 
delimitation hypothesis
under the MSC model

Subspecies of



Huang & Knowles (2016) Syst. Biol.

Model-based inference of species boundaries

genus Dynastes

1 recognized species
In South America

5 recognized species
In North America

Statistical equivalency of 
species status between North 

and South American taxa

10 inferred species of



Huang & Knowles (2016) Syst. Biol.

Model-based inference of species boundaries

genus Dynastes

1 recognized species
In South America

5 recognized species
In North America

Statistical equivalency of 
species status between North 

and South American taxa

10 inferred species of



Huang & Knowles (2016) Syst. Biol.

Integration across data types to corroborate delimited taxa
genus Dynastes

� Quantification of phenotype

� Geography 
(present and past)

� Ecology 



Huang & Knowles (2016) Syst. Biol.

Integrative data also provides insights into the divergence process

Position of 
taxa on the 
speciation 
continuum



Transformative potential of model-based analyses:

- Adaptive molecular evolution
- Codon substitution and analysis of natural selection

- Divergence time estimation and biogeographic analysis
- Phylogenetic inference 
- Species delimitation based on genetic data alone
- Demographic inference 

....models are how we communicate 
our knowledge to a statistical apparatus



Transformative potential of model-based analyses:

- Adaptive molecular evolution
- Codon substitution and analysis of natural selection

- Divergence time estimation and biogeographic analysis
- Phylogenetic inference 

- Demographic inference 

� � All models are flawed..., some are more or less useful 

- Species delimitation based on genetic data alone

....models are how we communicate 
our knowledge to a statistical apparatus



Transformative potential of model-based analyses:

- Adaptive molecular evolution
- Codon substitution and analysis of natural selection

- Divergence time estimation and biogeographic analysis
- Phylogenetic inference 

- Demographic inference
   (e.g., estimate divergence 
between population A and B)

- Species delimitation

BA C
Model of gene lineage divergence under 

an assumption of a molecular clock 



Transformative potential of model-based analyses:

- Adaptive molecular evolution
- Codon substitution and analysis of natural selection

- Divergence time estimation and biogeographic analysis
- Phylogenetic inference 
- Species delimitation

BA C
Coalescent model of 

gene lineage sorting process 

- Demographic inference
   (e.g., estimate divergence 
between population A and B)



Transformative potential of model-based analyses:

- Adaptive molecular evolution
- Codon substitution and analysis of natural selection

- Divergence time estimation and biogeographic analysis
- Phylogenetic inference 

- Demographic inference
   (e.g., time of divergence) 

� � All models are flawed..., some are more or less useful 

- Species delimitation

....depending upon how effectively they represent 
our expert knowledge of evolution



Transformative potential of model-based analyses:

- Adaptive molecular evolution
- Codon substitution and analysis of natural selection

- Divergence time estimation and biogeographic analysis
- Phylogenetic inference 

- Demographic inference
   (e.g., time of divergence) 

� � All models are flawed..., some are more or less useful 

- Species delimitation

....depending upon how effectively they represent 
our expert knowledge of evolution



3 species

AB C 2 species

Different species delimitation hypotheses are formulated as competing statistical models 
and inferred from genetic data through Bayesian model selection (i.e., through calculation 
of posterior probabilities of a model), as in the popular program bpp

Multispecies coalescent (MSC) model used to evaluate different 
species delimitation hypotheses 

Yang and Rannala (2010) PNAS



Delimitation with 
the Coalescent

 � Have a gene tree



• Makes predictions about the waiting time between coalescence events  
based on population size and sample size.

• “coalescence events” (backward-time) = =  “divergence events”  
(forward-time)

• Predictions are based on assumptions of particular properties of the  
population that the genes (or individuals having those genes) are  
evolving.

• Deviances in observed waiting times from that predicted can be used  
to make inferences about deviances in actual population properties  
from assumed Wright-Fisher panmictic population

Coalescent Theory Applications in a Nutshell



How Does Structuring Change the CoalescentTimes?

Gene1 Gene2

MRCAGene
Time =t1

• Recall that the coalescent makes
predictions about the timings to  
coalescence for genes sampled  at 
random from a panmictic  
population.



How Does Structuring Change the CoalescentTimes?

Gene1 Gene2

• Recall that the coalescent makes
predictions about the timings to  
coalescence for genes sampled  at 
random from a panmictic  
population.

• What happens if there are
restrictions to panmixia?

Time =t1
GENE
FLOW  

RESTRICTION



How Does Structuring Change the CoalescentTimes?

Gene1 Gene2

MRCAGene
Time =t2

Time =t1
GENE
FLOW  

RESTRICTION

• Recall that the coalescent makes  
predictions about the timings to  
coalescence for genes sampled  at 
random from a panmictic  
population.

• What happens if there are  
restrictions to panmixia?

• Then the timings to coalescent  
get extended



How Does Structuring Change the CoalescentTimes?

Gene1 Gene2

MRCAGene
Time =t2

Time =t1
GENE
FLOW  

RESTRICTION

• Recall that the coalescent makes  
predictions about the timings to  
coalescence for genes sampled  at 
random from a panmictic  
population.

• What happens if there are  
restrictions to panmixia?

• Then the timings to coalescent  
get extended

• This is the basis of the 
multispecies coalescent, MSC



Delimiting Units with the MSC

Coalescence  
times  

deeper than  
predicted

for panmictic  
population

Coalescence  
times

as predicted
for panmictic
population



Delimiting Units with the MSC

Coalescence  
times

as predicted
for panmictic
population

Detected  
restrictions  
in gene flow

• the MSC models  the extensions in timings of coalescent events as disruptions  of 
Wright-Fisher panmixia.

• It fits a “containing tree” to these disruptions (i.e., 3 species in this example)



Explosion of applications using the MSC for delimitation



Pros of species delimitation under MSC

� Can delimit species before reciprocal    
     monophyly of alleles or fixed differences

Knowles & Carstens (2007) Syst. Biol.

� De facto standardization for objectively delimiting taxa (i.e., data 
treated equally among all living things and avoid subjectiveness of 

what characters to measure) Fujita et al. (2012) TREE

gene flow

� Still detects lineages under low gene flow
Zhang et al. (2011) Syst. Biol.

Model-based inference

� Accuracy of species delimitation to sampling can be 
evaluated (i.e., will more data change status)

� Can take into account uncertainty in gene trees
Yang & Rannala 2010



Leache & Fujita (2010) Proc. R. Soc. B.

Model-based inference: probability of different hypotheses 
about species boundaries based on genetic data alone!



Coalescent-based 
species delimitation

� Less than 25% of researchers applying MSC models 
actually use results to describe new species!

� Less than 30% of researchers applying MSC models 
made taxonomic recommendations!

Carstens et al. 2013

Most newly discovered species go undescribed.

Data-informed summary suggests problems…..
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Sukumaran & Knowles (2017) PNAS

the multispecies coalescent for 
delimiting species

� All models are flawed...
some are more or less useful. 



Pinho and Hey(2010) Evolution

(reflecting the amount of gene exchange)

species (n=100)

populations (n=240)

subpecies (n=16)

(reflecting the time since separation)

No genetic distinction that separates 
 species versus population divergence



de Querroz 2005, 2007

Eventually all species concepts agree…so 
no big deal right?!?

general lineage concept



tim
e

2

splitting

speciation
duration

*

6 distinguished 
genetic lineages

* Not all lineages become species! 
And multiple population lineages of the same species!

mergingextinction

*4 species (represented by different 
colors), and protracted process

SpDSpCSpB
SpA (multiple population lineages of same species)
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Sukumaran & Knowles (2017) PNAS

How bad is the confounding of 
population verus species divergence?

The MSC dominates the field…



3 species

AB C 2 species

Different species delimitation hypotheses are formulated as competing  models and 
inferred from genetic data through Bayesian model selection (i.e., through calculation of 
posterior probabilities of a model), as in the popular program bpp

Multispecies coalescent (MSC) model used to evaluate different 
species delimitation hypotheses 

Yang and Rannala (2010) PNAS



Splitting events such as this are 
initiation of speciation through, 
e.g., population isolation

Color change indicates 
completion of speciation and 
development of true species 
from incipient species
(i.e., lineage conversion)

Sukumaran & Knowles (2017) PNAS

splitting

speciation
duration

*

Model 
with 

8 vs 3 
species

Does the MSC accurately 
delimit species?

*

Simulate data to account for differences in speciation duration 
(i.e.,  speciation is not instantaneous)



Degree of overestimation of species richness under the MSC
In

fe
rr

ed
 n

um
be

r o
f s

pe
ci

es
 

un
de

r t
he

 M
SC

Simulated number of species

Rate new species form

Sukumaran & Knowles (2017) PNAS



Degree of overestimation of species richness under the MSC 
depends on the speciation duration
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Initial population splitting

Speciation
duration

Formation of 
independent species



MSC powerful model for detecting genetic structure

population + 
species 
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MSC powerful model for detecting genetic structure

HOWEVER, the MSC is not capable of distinguishing 
genetic structure due to population versus species divergence
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� MSC is not a de facto standardization for delimiting taxa: 
degree of over estimation varies depending on speciation process

� Sensitivity to sampling  (e.g., sparse geographic coverage 
over-splits species)

Problems with species delimitation under the MSC

� “Robustness” to lineage detection with low levels of gene flow  
is not the same as accurate species delimitation

� MSC  detects structure – not species

(different statistical delimitation methods all based 
on the MSC, which also means seeking consensus 
across methods is not a good way to fail)

See Rannala (2015) Current Zoology 61, 846-853

Sukumaran & Knowles (2017) PNAS

Chambers & Hillis (2020) Syst. Biol.

Sukumaran & Knowles (2017) PNAS



Accurate species delimitation cannot be achieved with 
current models based on MSC

� Don’t run MSC and add a caveat – what’s the point!

� STOP reporting about all this “cryptic” diversity 

Delimitation under the MSC: 
 genetic structure = species 



� Erroneous species boundaries are
   inferred from current model-based   
   genetic approaches

� Relying on heuristics to interpret 
   results from current genetic methods 
   (e.g., bpp) is not the answer; does    
   not validate the MSC for species 
   delimitation

Model-based delimitation:

Delimitation under the MSC: 
� genetic structure = species 



*Jackson et al. (2018) Syst. Biol.
*Leache et al. (2018) Syst. Biol. 

Ad hoc heuristics to interpret results from MSC-based models for delimitation

Cummings et al. (2008) Evolution 62-9: 2411–2422

� use population divergence parameters (e.g., distantly related 
species, lots of migration)* 

� Genealogical sorting index*: 2Ƭ/θ
(i.e., population divergence time relative to the population size) 

These heuristics do not validate 
the MSC for species delimitation



Joint analysis of morphology and 
genetic data!

Solis-Lemus C, Knowles LL, Ané C (2014) Bayesian species 
delimitation combining multiple genes and traits in a unified 
framework. Evolution 69:492-507.

Using diverse sources of data for inferring species boundaries has a long 
systematic tradition, but not with model-based inference.



Hypotheses about species boundaries



� We model the formation of new population lineages and their subsequent 
development into independent species modeled as separate processes

Initial population splitting

Speciation
duration

Formation of 
independent species



� We model the formation of new population lineages and their subsequent 
development into independent species modeled as separate processes

� We provide for a way to incorporate current understanding 
of the species boundaries in the system through specification 
of species identities for a subset of population lineages

Initial population splitting

Speciation
duration

Formation of 
independent species



Sukumaran, Holder, Knowles (2021) PLoS Comput Biol

DELINEATE: a species delimitation method which makes 
probabilistic statements about whether or not distinct lineages 
are members of the same species

Genomic Data

(BPP, StarBeast, etc.)

Population
Lineage

Delimitation
Population Lineage Tree

Species Partition 
Probability
Estimation

DELINEATE

Species Partition Probability

0.76

0.11

0.01

� Lineages are Wright-Fisher populations within which 
the neutral coalescent process dominates

� Boundaries between lineages are structure imposed by 
ancestral population splitting or isolation



Sukumaran, Holder, Knowles (2021) PLoS Comput Biol

DELINEATE

Genomic Data

(BPP, StarBeast, etc.)

Population
Lineage

Delimitation
Population Lineage Tree

Species Partition 
Probability
Estimation

DELINEATE

Species Partition Probability

0.76

0.11

0.01

Genomic Data

(BPP, StarBeast, etc.)

Population
Lineage

Delimitation
Population Lineage Tree

Species Partition 
Probability
Estimation

DELINEATE

Species Partition Probability

0.76

0.11

0.01

Different species partitions 
representing different 
delimitation models
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DELINEATE

Genomic Data

(BPP, StarBeast, etc.)

Population
Lineage

Delimitation
Population Lineage Tree

Species Partition 
Probability
Estimation

DELINEATE

Species Partition Probability

0.76

0.11

0.01

� probabilities of different partitions are calculated conditional on the lineage tree 
and the speciation dynamic parameters that capture the tempo of speciation

Genomic Data

(BPP, StarBeast, etc.)

Population
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Species Partition 
Probability
Estimation

DELINEATE

Species Partition Probability

0.76

0.11

0.01

Different species partitions 
representing different 
delimitation models



Sukumaran, Holder, Knowles (2021) PLoS Comput Biol

DELINEATE

Genomic Data

(BPP, StarBeast, etc.)

Population
Lineage

Delimitation
Population Lineage Tree

Species Partition 
Probability
Estimation

DELINEATE

Species Partition Probability

0.76

0.11

0.01

Different species partitions 
representing different 
delimitation models

Initial population splitting, λ  

Speciation
duration

Speciation completion 
rate, σ

Protracted Birth Death (PBD) 
model of the speciation process

* 

* This process, as modeled in DELINEATE, is initiated by a stochastic lineage 
splitting process that extends over a duration of time that is determined 
stochastically by a speciation completion rate parameter

� probabilities of different partitions are calculated conditional on the lineage tree 
and the speciation dynamic parameters that capture the tempo of speciation



Each partition 
represents a different 
species delimitation

� We retain the rational of a comparative context in our 
computational framework: specification of species identities 
of a subset of population lineages that are well studied

Collect sequences of  lineages from well 
described species in addition to those less 
studied, which are the focus of inference of 
species boundaries



Sukumaran, Holder, Knowles (2021) PLoS Comput Biol

DELINEATE

Genomic Data

(BPP, StarBeast, etc.)

Population
Lineage

Delimitation
Population Lineage Tree

Species Partition 
Probability
Estimation

DELINEATE

Species Partition Probability

0.76

0.11

0.01

Genomic Data

(BPP, StarBeast, etc.)

Population
Lineage

Delimitation
Population Lineage Tree

Species Partition 
Probability
Estimation

DELINEATE

Species Partition Probability

0.76

0.11

0.01

Different species partitions 
representing different 
delimitation models

� Preferred partition with highest probability



5/10

Accuracy: recovery of true species partition for different sized 
trees with different numbers of undescribed lineages  

# of known 
species

total # of 
lineages

5 undescribed 
lineages

Sukumaran, Holder, Knowles (2021) PLoS Comput Biol

Specify the species affinities of some of 
the population lineages in the input tree



Sukumaran, Holder, Knowles (2021) PLoS Comput Biol

True (but unknown) speciation completion rate

0.0 0.2 0.4 0.6 0.8

True number of species
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Quantification of biodiversity with a 
model of an extended speciation process

Other implementations/applications of DELINEATE



ML estimates of the speciation completion rate, σ,
 per replicate, and 95% CI 

- Simulate 60 lineages

- Proportion of species 
versus population 
lineages varied as a 
function of the 
speciation duration (i.e., 
3 to 38 species among 
the 60 lineages)

Can estimate the speciation completion rate, σ, if input data contains 
at least one con-specific statement and one hetero-specific statement 



Sukumaran, Holder, Knowles (2021) PLoS Comput Biol

Other implementations/applications of DELINEATE

Genomic Data

(BPP, StarBeast, etc.)

Population
Lineage

Delimitation
Population Lineage Tree

Species Partition 
Probability
Estimation

DELINEATE

Species Partition Probability

0.76

0.11

0.01

� Integrate across partitions to determine if target populations are new species or 
belong to previously described species

Genomic Data

(BPP, StarBeast, etc.)

Population
Lineage

Delimitation
Population Lineage Tree

Species Partition 
Probability
Estimation

DELINEATE

Species Partition Probability

0.76

0.11

0.01



Sukumaran, Holder, Knowles (2021) PLoS Comput Biol

Other implementations/applications of DELINEATE

Genomic Data

(BPP, StarBeast, etc.)

Population
Lineage

Delimitation
Population Lineage Tree

Species Partition 
Probability
Estimation

DELINEATE

Species Partition Probability

0.76

0.11

0.01

� Integrate across partitions to determine if target populations are new species or 
belong to previously described species

Genomic Data

(BPP, StarBeast, etc.)

Population
Lineage

Delimitation
Population Lineage Tree

Species Partition 
Probability
Estimation

DELINEATE

Species Partition Probability

0.76

0.11

0.01

� Conduct delimitation without having to specify affinities for 
subsets of taxa if apply estimate of speciation completion rate 
from other independent data (e.g., related clades) in which 
similar speciation dynamics can be assumed



a new class of delimitation models that 
incorporate the speciation process

� can assign probabilistically lineages of unknown affinities to pre-existing or new species

� address the proliferation of artifactual species that results as within-species 
population lineages, detected due to restrictions in gene flow, are mis-identified 
as distinct species (as under the MSC)

� we are able to learn not only about species boundaries, but also about the tempo of 
the speciation process itself

DELINEATE:



DELINEATE: the process of population splitting and 
species conversion are decoupled

We can ask whether the higher diversity reflects:
83 species

294 species
125km

35km

� higher rates of population isolation 
(perhaps due to landscape complexity or 
dynamic geographies), or

� higher rates of development of speciation 
isolating mechanisms

Melanoplus grasshopper diversity

� Big Data: Between and within species genetic 
structure; specifically, target capture of 15,000 loci 
developed from RADseq across 30,000 individuals 
across the ranges of 352 species



a new class of delimitation models that 
incorporate the speciation process

� addresses the proliferation of artifactual species that results as within-species 
population lineages, detected due to restrictions in gene flow, are identified as 
distinct species

� By explicitly accounting for restrictions in gene flow not only between, but also 
within species, we also address the limits of genetic data for delimiting species.

DELINEATE:

� can assign probabilistically lineages of unknown affinities to pre-existing or new species

� we are able to learn not only about species boundaries, but also about the tempo of 
the speciation process itself



Sukumaran, Holder, Knowles (2021) PLoS Comput Biol
Limitations of genetic data alone for species delimitation

� Without any information about species affinities for a subset of taxa, or about 
speciation dynamics, accurate delimitation is not possible



Sukumaran, Holder, Knowles (2021) PLoS Comput Biol
Limitations of DELINEATE

That is, without incorporating independent 
information from other data sources, genetic 

data alone is not sufficient for accurate 
delimitation of species.

� Without any information about species affinities for a subset of taxa, or about 
speciation dynamics, accurate delimitation is not possible

Software: DELINEATE
� Phylogenetic modeling approach that delineates species versus 
population lineages under a protracted speciation model

https://github.com/jeetsukumaran/delineate

https://github.com/jeetsukumaran/delineate


Skeptical of statements that claim otherwise:



QUEZTAL: biologically informed demographic model over evolutionary time scales  

Population size in each deme at sampling time per generation 
informed by environmental heterogeneity across landscape

Environmental layer of 
Annual  Mean Temperature 
is higher than 26.4  C ◦

Flux de propagules Φ: Taille de population N :
˜ t

x ,y y∈Vx x xy y(Φt    ) ∼ M ( N , (p ) ) . t +1
j

i∈X
N = Φt   

i ,j

Examine the robustness of the MSC by considering 
the geography of genetic divergence

https://becheler.github.io/pages/applications.html Arnaud Becheler

Becheler & Knowles (in prep)

https://becheler.github.io/pages/applications.html
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Map of estimated genetic structure under the MSC

Geographic predictions of genetic structure  
associated with IBD, IBE, barriers, and stochastic population extinction

Robustness of the MSC

(implemented in bpp where genetic divergence 
between sampled locations across the map to 
coordinate at x)

� Inform sampling strategy to avoid misinterpretations 
about genetic divergence
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Map of estimated genetic structure under the MSC

Geographic predictions of genetic structure  
associated with IBD, IBE, barriers, and stochastic population extinction

Robustness of the MSC

(implemented in bpp where genetic divergence 
between sampled locations across the map to 
coordinate at x)

� Avoid overestimation of species diversity by conflating genetic 
structure within species with genetic divergence between species



model doesn’t predict 
genetic structure under a 

single species 
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REJECT model of no speciation 

Geographic predictions of genetic structure  
associated with IBD, IBE, barriers, and stochastic population extinction

� Identify genetic structure that support hypothesis of speciation
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