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Evolutionary applications of genomic data:

- Codon substitution and analysis of natural selection
- Adaptive molecular evolution
- Divergence time estimation and biogeographic analysis

- Phylogenetic inference

- Inferring species boundaries (aka species delimitation)
- Demographic inference

e All models are flawed..., but they are important because
models are how we communicate our knowledge
to a statistical apparatus



Evolutionary applications of genomic data
what I'll emphasize:

e Decisions/choices we make about model formulation

* Recognizing the subjectivity of model formulation
itself when making inferences

* Decisions when applying to empirical data
(e.qg., all the data, subset of data, what subset of data)



Evolutionary applications of model-based analyses:

(i) Inferring species boundaries (aka species delimitation)

(ii) Phylogenetic inference (and beyond the species tree)
(iii) Biogeographic study
(iv) Phylogeography

(v) Adaptive evolution



Evolutionary applications of model-based analyses:

(i) Inferring species boundaries (aka species delimitation)

(ii) Phylogenetic inference (and beyond the species tree)

i . SPECIES TREFE  LauraS. Kubatko and
(iii) Biogeographic study INFERENCE L. Lacey Knowles

Species Tree Inference

(iv) Phylogeography /
(v) Adaptive evolution I// 30% off

Methods and

Applicetions /4 with code P321 at
press.princeton.edu



Model-based approaches for phylogeographic inference

Discussion points:

e Why models are important

e Generic versus informed models

e Species-specific expectations of genetic variation
(e.g.. trait-based hypotheses, spatially explicit coalescent models, etc.)

e Concordance versus discord among species in communities
(i.e.. lessons from comparative phylogeography)



Why the transition from describing patterns of genetic variation
to understanding process requires model-based approach
Classics in phylogeography
T . Concordance reflects a common
i " _ vicariant history of population separation
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The data may be consistent with a shared response to a specific geologic
event, despite differing gene tree depths among taxa? Or maybe not?

By looking only at the gene trees,
it isn’t clear how the differences in gene tree depths
should be interpreted!
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To test for shared vicariant history of the coastal community:

Assess statistically how much of a difference in the depths of the gene trees would
still be consistent with the same geologic event based on the timing of divergence
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In the past, the central focus was on the ‘phylo’ component

PHYLOgeography Use of gene trees predominated and genetic
variation across populations described by:

_‘_a_,:«;e’_astep 1: reconstruct a gene tree

step 2: compare the relationships among
mtDNA sequences/haplotypes to the
geographic distribution of haplotypes

grasshopper haplotypes across populations
(color coded by the mountain top where
individual was collected)
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ifferent loci have different gene trees

Phylogenetic relationships among populations (i.e.,
what’s the underlying geographic history of divergence)?
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Different processes can produce similar genetic patterns

Recent isolation or migration?

@ Beaverbead Mins.

@ MaddisonRange | . 3 an

@ CUravelly Range

@ Elkbhom Mins,

@ Livingstone Range

@ Linle Belt Mins

@ Big Belt Mens

)y Crazy Muns,
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Tobacco Root Mtns,

@ Miss:on Range

@ M riangidaris

w— (), 003 subs, / site

= (.001 subs. / site ‘

Knowles & Carstens (2007) Evolution 61:477




Interbreeding between Neanderthals and humans?

Hypothesis: humans replaced Neanderthals without
gene flow between the separate species

311

Modem . .
wmans  ® What are two bits of evidence for

no gene flow based on this tree?

Vindija-80
Neanderthal

Problem with interpreting gene tree as evidence of
“divergence with no gene flow”

Nordberg



Interbreeding between Neanderthals and humans?

e Model based test of the hypothesis: what’s the
probability that this gene tree is compatible with
ancient gene flow between humans and Neanderthal

(Bayesian program IM)

311

Modem _
humans Gene divergence ==+»++=+»--SsssssrGaiia - - .

Vindija-80
Neanderthal

Modern humans Neanderthal
Result: yes, tree is compatible; does this mean there was gene flow?
* Not necessarily because with single gene not a lot of power to

evaluate the hypothesis
Nordberg



Equating a gene tree (or network) with a species’ history is not

appropriate for making inferences about evolutionary processes
———

: - widespread gene flow?
* range expansion } NG
(clade level 2:1 and“4:7) Iy
- allopatric fragmentation | .~
(clade level 3:4) =16 15
- restricted gene flow with isolatiori =
- by distance(clade level 4:3) -

o000
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soee | e |

Without a model:

e inferred processes may (or may not) be accurate because different processes can
produce a similar pattern in genetic data and gene trees may differ across loci

* no measure of the uncertainty/support surrounding hypotheses or
evaluating competing hypotheses

e no framework for incorporate additional data (e.g., geologic or ecological information)

e inherent lack of power when individual loci analyzed separately, and
discordance among loci is uninterpretable



Understanding historical process necessitates model-based approaches

- accommodate and make full use of
multilocus data (individual gene trees
differ so trying to interpret their patterns
would lead you to many different stories

Explicit model of a
species’ history

* estimate evolutionary parameters )
(e.g., population size, migration rates, divergence times, or demographic
changes like expansions or bottlenecks, the geographic coordinates of the

ancestral population)

- test alternative hypotheses/models (e.g., distinguish between a
hierarchical vicariant divergence model versus a stepping-stone
colonization model, or isolation by distance)



* Incorporate additional non-genetic sources information to
h

Single-refugium model

v fSangamon Iinterglacial begins — — -

Sangamon interglacial ends - - - il - = -~ = = = = = = - = = =~ -~

last glacial maximum - - - -« < «

M. marshalli
(east)

present day - - -
M. marshalli

(west) (west)

(east)

notheses

Coupled genetic and ecological-
niche models to test hypotheses
about ancestral refuges

‘Projections of current distribution

O Projections of past distribution
21,000 years ago

(based on 19 bioclimatic variables;
analyzed with MAXENT)

Knowles et al. 2007 Current Biology 17:1-7.



Coupled genetic and ecological-niche model:
With sequence data from multiple loci, we could reject the fragmentation

of a single refugial population, suggesting divergence among
multiple refugia promoted divergence.

POPULATIONS

West East
v

12 Mummy Range

e
@ number of sampled alleles

= (.001 substitutions/site

.'.*j]*q fb?. -

LOCUS 2

= RN

COI

(west) (east)

Knowles et al. 2007 Current Biology 17:1-7.



There are many different reasons why it is desirable to
combine genetic data with other types of information
(e.g., geographic or distributional data, ecological
information, etc)



Why is it desirable to combine genetic data with other
types of information?

7o

A= Capture biologically reality!
‘ e resistance distance (based on
underlying enwronmﬂental setting)

e Direction and location of
ancestral source of expanding
population differs between
Euclidean and resistance
distance (He et al. 2017)

likelihood — likelihood —+
- —

-160 =150 -140 -130 -160 -150 -140 -130

Diffusion model Resistance model

Likelihood surface of location of source population during expansion (He et al. 2017)
based on allele frequency gradients, represented by W-statistics (Peter & Slatkin 2013)

He et al. 2017. Inferring the geographic origin of a range expansion: latitudinal and longitudinal
coordinates inferred from genomic data in an ABC framework with the program X-ORIGIN. Mol. Ecol.

26:6908-6920. DOI: 10.1111/mec.14380



Use genetic data to corroborate inferences based on
other data types P = B
ENMs do not provide T
precise location of | * & | }
Pleistocene refuge for '

hickory trees

e
-~

habitat suitability

FFrrrrrreee present
0 05 1

Fig. 1. Schematic overview of demographic simulations. (A) Simulations
were initiated in the LGM landscape (shown here for C. cordiformis) from a
central deme (see red dot as an example) plus an area extending three ad-
ditional demes (black dots) in all directions. Different geographic sources of

.~ Inferred likelihood of geographic coordinates of

- Ll R ancestral refugia population — this location
o IR e P . . .
e {v 3\ corregponds to a macrofossil of the hickory species
. Y )8
{ o e
R
-100° -90°  -80°  -70°

Fig. 2. Estimated expansion origins (; red cross) in C. cordiformis (A) and C. ovata (B). The shading of pixels depicts a probability surface (kernel density)
showing the likelihood that each pixel served as the expansion origin relative to the pixel with the highest likelihood (i.e., Q). Glaciated regions are shown in
blue. The rekults presented in A and B are based on retention of four and three PC axes of variation in genetic summary statistics, respectively. Results based
on retaining additional PC axes are presented in S/ Appendix, Figs. S2 and S3.

Bemmels JB, Knowles LL, Dick CW (2019) Genomic evidence of survival near ice
sheet margins for some, but not all, North American trees. PNAS 116:8431-8436.



Statistical inference in phylogeography:

Need to define a model

To see how variation in the parameters (e.g., mutation
rates, migration rates, selection coefficients) leads to
specific patterns of genetic variation (i.e., patterns of
variation among DNA sequences, among SNPs, etc.)



How do we decide upon a model*:

e informed from information independent of the genetic data itself
— that is, a specific biological narrative motivates the model

e models informed by genetic data

e generic models

* All models are simplifications, and vary in their
relative degree of abstraction



Expansion model used because of known displacement of
hickory trees from current distribution by glacial ice sheet.

&= = Inferred geographic coordinates of source of
expansion, where the geographic coordinate
40° | is a parameter in the model (inferred using
ABC; SE€e He et al. 2017. Inferring the geographic origin of a
| | , range expansion: latitudinal and longitudinal coordinates inferred
30° A~ y,"' AL e | from genomic data in an ABC framework with the program X-ORIGIN.
bk ot k \ g Mol. Ecol. 26:6908-6920. DOI: 10.1111/mec.14380
; NS 33 50° SRS likelinood of
-100° -90° -80° -70° likelihood)
Bemmels et al. 2019 PNAS 116:8431-8436 40° :)_g
L o7
— 0.6
— 0.5
30° | o3
— 0.2
— 0.1

-100° -90° -80° -70°

Fig. 2. Estimated expansion origins (; red cross) in C. cordiformis (A) and C. ovata (B). The shading of pixels depicts a probability surface (kernel density)
showing the likelihood that each pixel served as the expansion origin relative to the pixel with the highest likelihood (i.e., Q). Glaciated regions are shown in
blue. The rekults presented in A and B are based on retention of four and three PC axes of variation in genetic summary statistics, respectively. Results based
on retaining additional PC axes are presented in S/ Appendix, Figs. S2 and S3.



Generic models in phylogeography

Tests of 142 objectively identified models (e.g., program like PHRAPL)

IGTT

X0X0 X0X]1 1300 1330 prese
PP=0 PP=0 PP 0.70 PP=0.13 PP=0.17

pasl

-

Pelletier & Carstens (2014 Mol. Ecol.)

* PHRAPL can create hundreds of possible histories that have a mixture
of gene flow, population subdivision, and/or population size differences
and compare these models using AIC (O’Meara)



Model choice in phylogeography: generic versus informed

e generic models

Tests of 142 objectively identified models

IGTT

X0X0 X0X]1 1300 1330 preseal
PP=0 PP=0 PP 0.70 PP=0.13 PP=0.17

pasl

-

Pelletier & Carstens (2014 Mol. Ecol.)

Statistical procedures themselves may seem to
provide a legitimacy to modeling approach — the
advocacy of objective models in phylogeography



Model choice

Tests of 142 ¢

X0X0
PP=0

e generic models

Table 3 List of all 143 models included in analyses. Model = t8my

Posterior
Model Parameters Mean SD Median probability
1030 T, 0,=0, =6, m,; my 0.792 1124 0.000 0.024
1232 T, 0a = 02, 6, Mz, m2n, V2 0.822 0.856 0.772 0.007
1200 T, 0,=105 6 0.836 0.985 0.499 0.004
122 T, 04=0; 6, my, 2 0.846 0.982 0.542 0.006
1220 T, 04= 03 6, my 0.849 0.957 0.647 0.006
1231 T, 0a = 02, 6, Mz, m2y, 71 0.863 0.877 0.859 0.006
1221 T,0,=05 0, my 7 0.870 0.878 0.862 0.011
1031 T, 0,=0,=6, m; my 7 0.886 1133 0.000 0.020
1230 T, 04 = 0 6; my; my 0917 0.937 0.880 0.006
1033 T, 0,=0,=06, m,; my 7,72 0.923 1170 0.000 0.018
0131 0y =0,, 6, my; my 1y 0.930 1.024 0.779 0.007
0130 0, = 0,, 6, my; my 0.949 0.881 1.055 0.010
1023 T, 0,=0,=6, m,; v, 72 0.956 1154 0.000 0.024
1201 T,0a=02 0,1 0.975 1.026 0.866 0.006
0030 B4 = 6; = 62 Mz mn 0.977 1210 0.000 0.024
21 T,0,=050, mp 7 0.990 1.042 0.927 0.007
0020 0, =0, =6, my, my 0.991 1.264 0.000 0.017
132 T, 04 =0y, 0, myp, myy, 12 0.995 0.981 0.986 0.007
0031 By =6, =6, m; my, 7, 0.996 1303 0.000 0.020
0022 O,=0,=6, my, 7 1.003 1241 0.000 0.025
1131 T, 0,=10, 6, myp my 7y 1011 0.967 1.013 0.004
1032 T, 0,=0,=0, m; my, 7, 1013 1212 0.000 0.031
1212 T, OA = 92, 91, miaz, Y2 1015 0.986 1.083 0.003
1233 T, 0,4=05 0, mp my, 1, Y2 1.021 0.946 1121 0.010
1208 T,0,=05 6,1, 72 1.024 1058 1.002 0.010
233 0, =0, 6, my; myy 1y, V2 1.026 0.985 1118 0.004
110 T, 0a= 6, 6, Mz 11 1.030 1.003 1118 0.007
mn2 0y =05 6, myy 2 1031 1112 0.921 0.008
130 T, 0, =10, 6, myp my 1.031 0.976 1.084 0.006
0112 0y =0, 6, my; 1> 1.032 0.991 1121 0.007
0032 B4 = 6y = 62, mi2 M2y, 12 1033 1212 0.000 0.020
0110 0, =0, 6, mp 1y 1.034 1.031 1.070 0.004
1020 T,0,=0,=60, mp my 712 1035 1.1% 0.000 0.015
0012 O,=0,=6, mp 7 1038 1272 0.000 0.018
1213 T,0,=0,=0;, mp 11, 12 1.041 1.053 1121 0.003
220 0y = 05, 0,, my 1.041 0.965 1121 0.010
1013 T, 0,=0,=0, mp 7, 72 1042 1227 0.543 0.024
31 0y = 05, 0, myz, mpy, 7y 1.048 114 0.997 0.007
1 T,0,=0,,0, mp 7 1.050 1027 1.098 0.013
0013 O = 6y = 62, muz, 71, 72 1056 1.254 0.000 0.021
0133 0y = 6y, 6, myp, My, ¥, 72 1.057 1107 1028 0.001
0033 0y =0, =0, mp my, 7y, 72 1059 1.289 0.000 0.031
1002 T,0,=0,=606, 1, 1.084 1.261 0.000 0.008
1331 T, 0a 6 = 02, miz, may, 11 1.098 1.093 1.081 0.000
0132 0y =0, 6, my; my V2 1101 0.991 1129 0.007
0210 0y =6 6, my> 1.102 111 1.040 0.001
1321 1,04 0,=0, my 71y 1108 1.012 1124 0.000
n23 T,00=0y, 0, ma, 1, 2 1118 1.0%4 1121 0.003
1021 T, 0,=0,=6, m, v 1119 1323 0.000 0.036
113 T,0,=0, 0, my 7y 2 1132 1.042 1129 0.003
1010 T,0,=0,=0;, m;; 1135 1.284 0.558 0.013
112 T,00=0y, 6 Mz 1.135 0.943 1137 0.006
1101 T,0,=0, 6,7 1.136 1.048 1129 0.006
1011 1, 0.=0, =6, m,7, 1148 1.274 0.739 0.021
0023 0= 0, =6, myy 7y 72 1154 1311 0.500 0.020

d

130 present
P=0.17

& Carstens (2014 Mol. Ecol.)



Model choice i

Tests of 142 ok

X0X0
PP=0

e generic models

Y

Table 3 Continued

Posterior
Model Parameters Mean SD Median probability
(230 0a = 62, 81, T2, M2y 1172 102 1135 0.003
21 Ox, 6 = 0, ™oy oy 7 1173 1.106 1129 0.003
1000* T,0,=0,=6, 1178 1.261 0.971 0.015
120 T,0,=0, =0, 7 1.180 1163 1124 0.004
03 00 = 0, 0, Mo, 12, %2 1181 1173 1124 0.007
1001 T, 0,=0,=6,7 1187 1328 0.752 0.021
0011 0= 0, =6, my 71 1198 1.298 0.931 0.022
0213 00 = 0, 0, My 11, 12 1.199 1117 1135 0.004
10 T,0,=0, 0, %> 1.205 1217 1129 0.004
n21 T, 04 = 0y, 6, mon, 11 1211 1141 1137 0.010
1022 T, 0,=0, =0, my 7. 1214 1308 1011 0.021
1012 5, 0,=0, =0, my, 7. 1270 1324 1129 0.021
1332 T, 0, 0y = Oy myy My Y2 1271 1159 1.179 0.003
1832 T,0a, 6 = 0 mon, 12 1.280 1.087 1233 0.000
®12 0y = 05, 0, myy 7 1.281 1181 1140 0.001
1312 7,0, 0, =0, my 1 1.286 1105 121 0.001
1323 T, 04, 0,=0, my 7 12 1312 1075 1.239 0.001
0123 04 =0y, 02, M2, 11, 12 1.312 1.189 1192 0.007
1003 T 0,=0, =0 112 1321 1443 1122 0.007
13 0x, 0= 0, Mz 11, %2 1327 1207 1182 0.001
1433 T, 0x, 0, 02 myz Mo, Y, 2 1327 0.998 1.269 0.000
312 Oa, 6 = 02, Mz, 12 1.328 1.201 1209 0.004
@11 0 = 0, 0, myz 11 1333 119 1.256 0.006
1320 T, 05, 0 = 0, my 1.336 1235 1.180 0.001
1403 T, 05 0, 02 71,72 1.350 101 1.298 0.000
1330% T, 0a, 0y = 6, muz, M 1.351 1274 125 0.006
B3 Ox, 0y = 0, Mo, 12, %2 1.353 1170 1.259 0.003
133 T, 0x, 0 = 8 Mgy, Mo 71, Y2 1.357 1127 1277 0.003
nw 5,0, =0, 0 1 Y2 1.400 1.186 1.408 0.003
1423 T, 0, 0, 05 Moy 7, Y2 1.408 1502 1182 0.001
w331 Ba, B = 02, Mz, M2, 1 1424 1314 1.368 0.000
w11 Ox, 0, = 0, myz 11 1475 1353 1353 0.003
1432 T, 0, 0y, 05 My oy, Y2 1.500 1297 1.360 0.000
1402 T, 0, 0, 02 72 1543 1101 1545 0.003
413 Oa, By, B2, maz, 71, 12 1.570 1139 1.545 0.006
0412 0x, 0, 0 My V2 1575 1172 1516 0.001
©B2 By, 0y = 0, o, 12 1.591 149 1.481 0.001
1303 T, 0 0= 0 v, 72 1.591 1303 1610 0.003
1301 7,00 B =6m 1621 1.428 1.554 0.001
1300* T, 0, 0,=6; 1.630 1342 1.562 0.004
1313 T, 0, 0, = 0 myz 11, %2 1.676 3419 1164 0.007
0423 Ox, 0, B, Moy, V2, %2 1.710 1358 1593 0.000
0430 Oa, By, 02, M1z, mn 1715 1294 1.620 0.000
0113 O, 0= 0, myz 1, 72 1715 5727 1.068 0.004
0411 Oa, 8, 82, maz, 71 1717 1259 1.665 0.003
M2 Ox, 6, 6, My V2 1.759 1417 1614 0.000
1401 T, 0a, B, 0271 1.781 1.835 1.505 0.001
0433 0x, 0, B myz Moy 1, Y 1.843 1773 1597 0.000
0021 0y = 0y = 0, Mz 1 1.867 1813 0.673 0.014
021 Oy = 05 0, man, 1, 1.934 6915 0.937 0.006
1400 T, 0y, 6, 0, 2098 1697 1.899 0.000
R 04 = 0, 0, My, Mo, 12 2186 7.859 1121 0.007
0 0y =0y 05 myy 7 2356 7532 1.254 0.006
nz T, 00 = 0, 0, may 72 2551 8798 1.283 0.003
ns T, 00 = 0, 8, My Mo 71, Y2 2748 12.927 0814 0.008
1410 T, 0a, 6, 02 mi2 2790 7.89%0 1673 0.003

0 present
=0.17

Carstens (2014 Mol. Ecol.)



Model choice in phylogeography: generic versus informed

Table 3 Continued

Posterior

Model Parameters Mean SD Median probability
1420 T, 04 0y, 02, mn 2819 9142 1557 0.001
0830 0y 6 = 0, myy my 3.156 11.980 1.608 0.000
0431 0, 6y, 05 myy M, W 3.388 12.338 1.687 0.001
0432 0 0y, 6, myy Moy, 12 3.769 15.818 1.606 0.003
1210 T, 00= 0, 6, myy 4007 21.699 0.880 0.010
610 0, 0 = 0, my, 4405 20.648 1670 0.001
0421 0, 6 0 my 7 4761 18.586 1.563 0.000
1223 T,00=05 6, M Yo %2 4813 27,942 0.880 0.007
0410 0, 6y 0, myy 4840 19.483 1.684 0.000
333 s, 01 =02miz, Moy, 11, 2 4841 24.764 1.304 0.004
1411 1,0, 6y, 0, my ¥ 1949 275 1182 0.000
820 0, 6 = 0 my 5.184 25.275 1771 0.000
1431 T, 04 6, 02 iz Moy, 2 5539 28.987 1.440 0.000
1421 T, 04 6y, 02, m2y, 11 5.618 2.805 1418 0.001
1311 5,0, 0 = 0 mpy 7 5721 2177 1137 0.001
o111 0,= 0, 6 myz 1 5.804 32.950 1143 0.008
0420 0, 6, 0 ma 6.087 28.946 1.629 0.001
1412 T, 04 6y, 02 iz 72 6.186 3.7 1611 0.003
0010 0,=0, =0, my, 623 36.293 0.000 0.017
1413 T, 04 0y, 02 Mz Yo, %2 8209 48.083 1344 0.000
1430 T, 05 0y, 02 myy ™y 8.661 50.499 1516 0.001
142 T, 0a 61, 02, ma, 72 9.269 45.089 1344 0.006
0121 0,= 0, 0 my 7y 9369 56.607 1327 0.004
1302 5,000 =0 12 9386 4243 1233 0.004
0120 0, = 0;, 0, my 9.466 57.924 1189 0.004
1310 T, 0a 01 = 6 a2 9.812 60.333 1.206 0.000
1100 T, 0,= 0, 6 10795 68.438 1121 0.007
832 0, 6 = 6 myy My 72 13053 8.99 1415 0.004
120 T, 0,=0, 6, my 14667 54.818 1.365 0.007
X0X1% 07 16013 5576 15576 0.000
X0X0* N 17.048 7.013 16115 0.000
0000 0,=0,=

T For each model: tOmy

The answer is model 1023! Divergence ime () |~ Theta 0) Migraton (m) | Population expansion (1)
0: island model 0:0,=6,=6, 0: no migration \0:$no expansion
1: divergence at time (1) 1:0,=6,,6, l:m,, Ly,
N 2:9,=6,,6, 2:m, 2y,
X: pamixia 3:0,,6,=6, 3:m,,m, M A A
pas 4:0,,6,,0,
X: na/pamixia
T T T Prior: 0.001-5 Prior: 0.01-10 per locus Prior: 05 migrants Prior: 0.1-9
(4N generations) per generation (exponential)




* Should we
programs to de

1300 1330
PP=0.13 PP=0.17




* Model formulation is a way of communicating our expert
knowledge to statistical apparatus to test hypotheses



Model-based approach:
Forecasting spatial patterns of diversity in poorly

explored, highly threatened ecosystems

e A

gt s
&\

‘/h- '»v 3
Wi -
7K.

: [
| I{/Iodel-based approach:
| 'Directly model (historical processes through a combination of
ecological-niche models under paleoclimates and genetic analyses,
, discovered a central region in the Brazilian Atlantic forest that served
as a biodiversity refuge during climatic extremes.

8%,
)

H. semilineatus
H. faber




Model species distributions under current conditions and climatic
extremes (based on climatic niches with MAXENT)

Carnaval et al. 2009. Science



Model species distributions under current conditions and climatic
extremes (based on climatic niches with MAXENT)

Predicted

region of  Maps of stable and unstable areas
stability raise specific hypotheses about
regional differences in persistence
and hence diversity, which lead to
phylogeographic predictions that
can be tested with molecular data

Carnaval et al. 2009. Science



Different demographic scenarios motivated by stable/unstable areas:

recent colonization

(20 kybp)

Results support community responses for both - !
models using hierarchical Approximate ,
Bayesian Computation:

vall

]

(i) simultaneous, multi-species colonization
of unstable areas from adjacent refugial
populations since the LGM

Population 1 Population 2

long-term persistence

? (120 kybp —
4 N 1.2 Mybp)
(i) assemblage-scale, long-term 21 kbe —

persistence of populations .
in isolated refugial areas -

(i.e., temporally stable regions)

I

Population 1 Population 2

Carnaval et al. 2009. Science



* All models are simplifications, but they vary in their
relative degree of abstraction

Different ways to model population expansion:

(i) Model as population size change with no spatial aspect of expansion
(e.g., Brazilian Atlantic forest areas of instability associated with
recent expansion)

(ii) Model expansion process across landscape explicitly

'ENM based on paleoclimatic data 6kya

¥

W Present

nnnnnn



IDDC: Generate species-specific expectations for patterns of genetic variation

integrative
Distributional
Demographic
Coalescent
modeling

Distributional model
(i.e., ecological niche model) with
predictions on probability of occurrence
across the landscape

4

Demographic model
informed by habitat
suitabilities

4

Spatially-explicit coalescent
simulations based on
demographic model

Tests of hypotheses/models
using ABC

also Knowles & Serrano Mol. Ecol., 2010

He, Edwards & Knowles, Evolution 2013

Habitat suitability
scores

40

20

10

5

100

60

20

10

100

100

40

40

80

80

60

60

K(m)

400
(40)

200
(20)

100
(10)

50
(5)

1000
(100)

600
(60)

200
(20)

100
(10)

1000
(100)

1000
(100)

400
(40)

400
(40)

800
(80)

800

(80)

600
(60)

600

(60)

Carrying capacity: k;

Gene coalescence
across the landscape

SPLATCHEZ2



IDDC: integrative Distributional, Demographic, Coalescent modeling

SPECIES-SPECIFIC
Spatially explicit
guantitative information
about probabilities of

occurrence based on
habitat suitability iy it

40 | 20 | 10 S

Habitat
suitability
Scores 100 [ 100 | 40 40

100 | 60 | 20 | 10

80 |80 | 60 | 60




IDDC: integrative Distributional, Demographic, Coalescent modeling

Spatially explicit
probabilities of occurrence based on
habitat suitability

4

SPECI ES'SPECI FIC low habitat high habitat
S . ” | . suitability suitability
patially explicit K(m)
demographic model )| 20| (10| &
1000| 600 | 200 | 100
* carrying capacity: k 1000}i000 400 | 400
* migration rate: m (100)(100) (40) 40
* logistic growth rate: r low K (80) | (80) | (60) | (60) high K
I |

low m High m



e.q.: SPECIES-SPECIFIC Demographic model:

At each generation:

-the population density, N;, of each deme is logistically regulated

-followed by a migration step

-the population densities and number of immigrants (N, and m)
are stored and used during the genetic simulations

- carrying capacity: k;

- # of emigrants leaving deme i: N;ym
k:
- # of immigrants entering deme j:z—jk

A

K; 1
Z—/ir Ny m \

[

\

Currat et al. 2004



IDDC: integrative Distributional, Demographic, Coalescent modeling

espatially-explicit genealogies to generate genetic patterns
-at each generation (looking backwards in time), genes have probability of:

(i) staying in the same deme,
(i) move to a different deme, or

(iii) coalesce with another gene lineage
(depending upon the population densities and migration rates

from the demographic model, which are specified by ENMSs)

past

A

2000

1500 _,

time

1000

\
500

L_present




Under different demographic parameters (e.g., different k and m), same set
of sampled populations would have different coalescent histories
because of different probabilities to:
— (i) stay in the same deme,
72000 e .
(i) move to a different deme, or
Lseo (i) coalesce with another gene lineage

71000

7500

K=5000, m=001,r=05

(iv) Mutations accumulate along
the branches of the genealogy

according to a Poisson process
Wlth rate ,Ut K = 5000, m = 0.085, r=0?

e Simulate predicted patterns of genetic variation for set of
parameters under the model



Species-distribution model (SDM)

generates predictions on probability
of occurrence across the landscape

low habitat high habitat
suitability suitability
Spatially explicit
demographic model ‘\
(localized population 72 N
densities, migration and Sk |!Mim
growth rates) \
low K high K
B -
@ low mand r High mand r

Habitat suitability
scores

40 | 20 | 10 5

100 | 60 | 20 | 10

100 | 100| 40 | 40

80 (80 [ 60 | 60

K(m)
400 (200 | 100 | 50
(40) [ (20) [ (10) | (5)
1000 600 | 200 | 100
(100)| (60) | (20) | (10)
1000 (1000 | 400 | 400
(100) [(100)| (40) | (40)
800 | 800 | 600 | 600
(80) | (80) | (60) | (60)

Carrying capacity: k;

Spatially explicit coalescent

model to generate predicted
patterns of genetic variation for

the empirically sampled ‘
population localities

.

~

Gene coalescence

across the landscape




e Sequenced 6 nuclear loci in 114 individuals of
sampled populations (in color) across the species range

Wnde above 2000m
P

J-'E"

?\

MT




iDDC : Model Selection & Parameter Estimation using
Approximate Bayesian Computation (ABC)

Model
See Beaumont et al. 2002
Simulated Sum.mgry
‘ statistics Advantages:
datasets (simulated data) * computational efficiency compared to ML methods
* allow for complex models
Summary _
statistics — Estimated
empirical data parameters
A A : | :
:
: We can identify sets of parameters for
= specific models that produce simulated
& data that matches the empirical data.
| Sons | _
Statistic

Suggested software: abctoolbox (Wegmann et al. 2010)



What geographic configuration of sky island populations promotes species divergence?

Population connectivity determined by y Colonization of present sky island
contemporary sky island distribution distribution from glacial refugia

19 bioclimatic variables used in modeling distributions

Montana

e %
%Wyoming

ENM based on current environmental data ENM based on paleoclimatic data 6kya

| * grasshoppers are flightless habitat specialists
restricted to montane meadows




IDDC tests of drivers of divergence

population connectivity
determined by contemporary sky
island distribution

Retain
simulations
whose SS are

Model
Selection

Simulations:

Settin
2 demographic Calculate

Choose priors for
and

parameter
estimation

model parameters > summary close to
Coalescent - statistics iical
(K and m) > DNA empirica

ones

Colonization of present sky
island distribution from
E

.

6 anonymous nuclear loci from 114 individuals sampled
across the range of M. oregonensis




Ancestral population

Carrying capacity (k) Migration rate (m) size (©,) Mutation rate (p)
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Figure 4. Posterior distribution (red line) of parameter estimates (i.e. carrying capacity, 4, migration rate, 7, ancestral population size 0 ,,
and mutation rate, [) for each of the two colonization models, (a) CM and (b) CM,, and the two sky island isolation models, (c) IMg and
(d) IMg,, where the subscripts E and G refer to connectivity patterns determined by either environmental heterogeneity or geographic
distance, respectively. Results are based on a GLM regression adjustment of the 5000 closet simulations to each model. The distribution of
the retained simulations (blue line) and the prior (black line) demonstrate the improvement that the GLM procedure had on parameter
estimates and that the data contained information relevant to estimating the parameters.
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Model tests based on comparing
marginal likelihoods:

Patterns of genetic variation reflect: (i) a colonization history from glacial
refugia to present sky island distribution

Knowles LL, Massatti R (2017) Distributional shifts — not geographic isolation —

as a probable driver of montane species divergence. Ecography 40:1475-1485. 7«5&95 - ‘




Explicit modeling of movement across landscape in
phylogeography models

L. lineopunctulata i praepedita M. lineoocellata

Linear distribution of populations
along SW coast suggests
Isolation-by-distance may be
iImportant in structuring patterns
of genetic variation

Edwards, Keogh, Knowles (2012) Mol. Ecol.



M. lineoocellata
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But species vary in their specialization to sand-dunes,
suggesting habitat differences across space may be important
In structuring patterns of genetic variation

Edwards, Keogh, Knowles (2012) Mol. Ecol.



Climatic conditions have changed over time

Morethia ,  Lucasium Lerista
Current . . ... lineoocellata’ »”alboguttatum® praepedita’
. Habitat suitability 7 ; -3
distribution —To24:
(contemporary B 25.4¢
' ' [ 50-74
climatic data) —gh

Past distribution (based
on paleoclimatic data
21,000 yrs bp )

(based on ecological-niche models,
ENMs, with MAXENT)

0 160
ety
Kilometers

21,000yrs bp

[10-24.9%
B 25-49.9%
B 50-74.9%
B 75-100%




D. ornatus Luc. alboguttatum L. lineopunctulata L. praepedita

v — unstable
g™ staple

"4 _..DM

Climate-induced distributional shifts may
structure genetic variation, given
differences in stability of habitat over time

Edwards et al. (2012) Mol. Ecol.



Transforming hypotheses into testable phylogeographic models:

Incorporate history of shifts in species distribution in explicit
spatial framework

Colonization by dynamic niche

Past _ Present
Dynamic

ENM

—ail

Start from LGM refugia

*Colonize with changing
layers of ENM



Spatially explicit coalescent model to capture movement across space

integrative

Distributional iIDDC:
Demographic

Coalescent

. Distributional model
modeling

(i.e., ecological niche model)

4

Demographic model

Hypotheses

* geographic isolation alone (IBD)

* population connectivity determined by current
landscape, as measured from ENM @

* population connectivity determined by Coalescent model

distributional shifts associated with climate change,
as modeled by current and paleoclimatic data

24 anonymous nuclear loci from 89 individuals sampled

across the range of Lerista (shown by dots)
He, Edwards & Knowles (2013) Evolution



IDDC modeling:

Generate lots of simulated data sets under
e each model (IBD, cENM, dENM).

IBD

We can identify sets of parameters for
°ENM specific models that produce simulated
data that matches the empirical data.

Suitability

High

dENM
Model Selection using
‘ Approximate Bayesian
Past Spatially Explicit Demographic Modeling Current C O m p Ut at i O n ( A BC)
low K high K
[ -
low m high m

He, Edwards & Knowles (2013) Evolution



Tests of hypotheses/models using ABC

Retain
simulations
whose SS are

Simulations:
Setting priors demographic Calculate
{e]§ -> summary
parameters Coalescent - statistics
> DNA

Model

Choose

model close to Selection
empirical

ones

Comparison of Bayes factor showed that

Colonization by dynamic ENM
>> |solation by contemporary ENM

> |solation by distance

- Start from LGM refugia

Dynamic > - Colonize with changing layers of ENM
Past ENM Present He, Edwards & Knowles (2013) Evolution

il




Advantages of iDDC:
» Flexible (expand to multiple species)
« Complex history
 Test of different historical processes

* Model verifications for ABC, e.g.:

- Is the model capable of generating the observed data: the likelihood of the
empirical data can be compared with the likelihoods of other retained simulations (a p -
value of 0 means all the simulations had a higher likelihood than the observed data)

- Compute the coefficient of variation of each parameter explained by each PLSs of the
summary statistics as an indicator for the power of the estimation

- Accuracy of parameter estimation in the most supported model evaluate
using 1000 PODs generated from prior distributions of the parameters

Challenges:

 iDDC is computationally intensive



Evolutionary applications of genomic data

what I'll emphasize:

e Decisions/choices we make about model formulation

* Recognizing the subjectivity of model formulation
itself when making inferences

* Decisions when applying to empirical data
(e.g., all the data, subset of data, what subset of data)

* Decide how to extract
information from genetic data



Summary statistics of genetic variation will have different values
depending upon the biogeographic and demographic processes
generating the genetic data

Summaries of genetic variation
\

Population subdivision " "

Tajima’sD >0

frequency

li

Population growth

number of pair-wise differences

Mismatch distribution
(Rogers & Harpending 1992)

—
[ |

Tajima’sD <0

frequency

number of pair-wise differences

Mismatch distribution
(Rogers & Harpending 1992)




Decisions about how to extract information from
genetic data

= use of summary statistic (sacrifices information
content for simplification and ease)
* observed quantities are compared to expectations

—> calculate full likelihood of the sequence data
(computationally demanding, and may not work for
complex models, but makes full use of the data)




Understanding the effects of rapid climate change on species diversity:

Did the frequent and repeated shifts in species distribution in response
to the Pleistocene glacial cycles promote or inhibit divergence?

Date (milion years before present)

G
0
g
0

What is the timing of divergence?
* Pleistocene versus pre-Pleistocene?
* Glacial versus inter-glacial?

(£004) 12000 B RUNNS sy
e Oal/OsgL ,a—qﬁ?’

e )]
1amon

Interglaciations

Carstens & Knowles 2007, Mol. Ecol. 16:619-27.



« Use multilocus data and a coalescent framework
to estimate the timing of divergence

COI

211

= 0.001 substitutions/site
® M. oregonensis
© M. montanus

23 M. montanus

36 M. oregonensis

(Bayesian program M)

Gene divergence ====++++-- (SRt . ..o

Species diVErgence ...... /sy Augaasd taaeie e ..

Timing of
divergence?

Carstens & Knowles 2007, Mol. Ecol. 16:619-27.



Precise estimate of T suggests species diverged during a glacial period

Single locus, estimate from average
coalescent approach  mtDNA genetic distance:

49x10°t0 2.0 x 106

Multilocus,| coalescent
approach

o) g\
< Sn mo Vg Vo) Vg Vg v o) v S
) — O — S S S - oS O oS O —
N < < W < o < < XK < < Ve
N — M o ¥ 9 9o o oy = & A
— — — — N N N N T v O

I glacial period
[ Tinterglacial period

*same mutation rate used in the

different approaches
Carstens & Knowles 2007, Mol. Ecol. 16:619-27.



Verified the accuracy of the speciation model given
the data (only 6 loci)

(estimates may be compromised when the complexity of the
model exceeds the information content of the genetic data)

- Simulate genetic data under models of evolution matching the empirical grasshopper
data and ask whether the inferred divergence time matches the divergence time used
o T to simulate the data

o
~ 15}
O
=
O Q.-
co 121 -
)
= 0
A 9F . -
s W
I
k= or 1
= ; """"
= | &
S I S
O 1 1 1
0.5Ne INe 2Ne 4Ne
—90% HPD @ cstimate

Simulation conditions
Carstens & Knowles 2007, Mol. Ecol. 16:619-27.




How do we decide upon a model*:

e models informed by the genetic data (...but be careful not to use same data twice)



Informing model based on preliminary&s
tests based on genetic data <

-

. - %

L A 3 0y

| [+ POV
'V,’I’"- . i :“l%f'.x'.

Collared Plka

0000000 O«
ONOOTBWN =
PRSP
P
000000000 §
©CONOUIRWN =
833355 B

Sometimes ENMs not sufficient
to define model

Lanier et al. (2015) Mol. Ecol. 24:3688-3705

4 - B >- e e - .
R et et v AT R
62’:<
ey

<&
;‘<5 <;’JP <:Csb
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* Paleoclimatic data used to model
past species distributions
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PC1 (5.6%)

Allie's Valley
Anchorage
Crescent Creek
Denali Hwy
Eagle Summit
Jawbone Lake
Lake Kenibuna
Pika Camp

® Rock Lake

PC1 (15.4%)

* Informing model based on
preliminary tests of genetic data




To better understand the historical demographic trends for pika populations,
we estimated divergence time, gene flow and population size changes

FastSimCoal.

N
T o
S 10,892 variable SNPs
s Tas
N, v N e
Toe
] 2] 2

Fig. 2 Hypothesized demographic history of pika populations used in FASTSIMCOAL2
analyses. Pika ancestors diverged (Tpns generations ago) into ancestral populations of
Pika Camp (Np_anc) and the other populations (Nns). Later, the divergence

into southern (Ns_anc) and northern refugia (Nn_anc) occurred, and populations
experienced recent expansions and exchanged migrants. The estimates of these

parameters are listed in Table 4. Lanier et al. (2015) Mol. Ecol. 24:3688-3705



e Our results indicate that contemporary factors alone (i.e., current habitat continuity
and glacial corridors) are not sufficient to explain connectivity among populations
of Collared Pikas across their range

e Instead, the results provide strong support for the predominance of three divergent
lineages, likely separated in different Pleistocene refugia, with population expansion
among lineages predating the Last Glacial Maximum

Lanier HC, Massatti R, He Q, Olson LE, Knowles LL (2015) Colonization
from divergent ancestors: glaciation signatures on contemporary
patterns of genetic variation in Collared Pikas (Ochotona collaris). Mol.
Ecol. 24:3688-3705.



How do we know if we used the “right” model?

In practice we can never completely model the
evolutionary processes, all we can hope for is that
we have captured the important features.

(i.e., YOUR knowledge about a biological
system is key!)



“The purpose of models is not to fit the dat
but to sharpen the questions.”

- Samuel Karlin




Evolutionary applications of genomic data

* Accounting for species-specific traits
e Spatially explicit coalescent models

 Comparative analyses of genetic variation
across species






Evolutionary applications of genomic data

* Accounting for species-specific traits
e Spatially explicit coalescent models

 Comparative analyses of genetic variation
across species



Evolutionary applications of genomic data

What I’ll emphasize:

e Decisions/choices we make about model formulation

* Recognizing the subjectivity of model formulation
itself when making inferences

* Decisions when applying to empirical data
(e.qg., all the data, subset of data, what subset of data)



Does micro
climate




Sky island community responses to climate change similarly
(based on patterns of genetic differentiation)

Carex chalciolepis e P

Wyoming

Colorado ; )g

TERGIES North

n‘t{!\ Central

\\

I /5 Kilometers

Massatti & Knowles
(2014 Evolution)



SKy island communities: responses to climate change

* co-distributed, abundant taxa with similar
Carex chalciolepis natural histories and dispersal abilities

* so similar that ENMSs project
very similar past distributions



e taxa differ in microhabitats

inhabits slopes and restricted to wetlands
ridges

3 )
i
3
M

Carex nova




| Wyoming

Given that ecological niche models (ENMs) are similar

between species (both present and during LGM)...
why would we predict discord in patterns of
genetic variation between the plant species?

Interactive Geology Project, University of Colorado Boulder: igp.colorado.edu
Sty o -

-\,")2 >
—r 3

If microhabitat me{tters. .
e glaciers in drainages would have displaced
populations of wetland specialist



Why should microhabitat matter for sky island inhabitants?

Colorado = \ '

Interactive Geology Project, University of Colorado Boulder: igp.colorado.edu
- ~ » » -
. e -

gy = . New Mexico
’ S -

¥

If microhabitat me{tters. .
e distances separating populations may have been considerable greater
in the past — but only in the wetland specialist



1. Sky island communities: microhabitat differences and
responses to climate change

| T
|

* SNPs from over
22,000 loci (RADseq)

* sampled population pairs of
C. nova and C. chalciolepis
from different mountain ranges

Massatti and Knowles, Evolution (in press)
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estricted to wetlands

projected past distribution

» Structure analysis of SNPs from over 22,000 loci
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projected past dlstrlbutlon

» Structure analysis of SNPs from over 22,000 loci



projected past distribution

« STRUCTURE analysis of SNPs from over 22,000 loci

Massatti and Knowles, Evolution (in press)



inhabits slopes and

ridges

. chalciolepis

&,
c@@

projected past distribution

Massatti and Knowles, Evolution (in press)
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Genomic patterns support predictions of an interaction
between microhabitat affinity and climate change
(glaciers are barrier for movement of wetland specialists only)
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Genomic patterns support prediction of an interaction

between microhabitat affinity and climate change
Massatti & Knowles (2014) Evolution

Carex chalciolepis
dry ridges

Carex nova
) wetland specialists

Test if observed discordant phylogeographic structure could be
caused by differences in microhabitat affinity ....

* generate species-specific expectations for patterns of genetic variation
(i.e., glaciers are barrier for movement of wetland specialists only)



IDDC: Generate species-specific expectations for patterns of genetic variation

He, Edwards & Knowles, Evolution 2013

integrative

Distributional s
Demographlc Distributional model 14; : ;: 150
Coalescent (i.e., ecological niche model) with —
modeling predictions on probability of occurrence PP P o

across the landscape

1 K(m)

. 400 | 200 | 100 | 50
Demographic model 40) | 20) | (10| (5)
I I 1000 600 | 200 | 100
mforme_d by habitat el i o

suitailities 1000 [1000 | 400 | 400
(100)|(100)| (40) | (40)
800 | 800 | 600 | 600
(80) | (80) | (60) | (60)

Spatially-explicit coalescent Carrying capacity: ki
simulations based on Gene coalescence
demographic model across the landscape

Tests of hypotheses/models
using ABC SPLATCHE2




IDDC: Generate species-specific expectations for patterns of genetic variation

H: species-specific responses to climate change

e Glaciated areas act as barriers,
but only in wetland specialist

So genetic discord between species is not dismissed 2L
as reflecting idiosyncratic nature of history; genetic :
discord predicted from taxon-specific traits!



IDDC modeling:

Coalescent Simulation

Glaciers shown
in blue

— |
. I—| .
- Glaciated areas barrier

Generate lots of S|mulated data
sets under each model

We identify sets of parameters for the
models that produce simulated data
that match the empirical data.

Suitability

High I

Low

Past Spatially Explicit Demographic Modeling ;Current M Od e I S e I e Ct i O n u Si n g
Approximate Bayesian

high K Jow K Computation (ABC)
-
high m low m

Massatti & Knowles (2016) Mol. Ecol.



Tests of hypotheses/models using ABC

Setting Simulations:
demographic

Choose priors for
model parameters -> Coalescent

(K and m) -> DNA

Model: Glaciated areas barrier

Past Spatially Explicit Demographic Modeling Current

high K low K

high m low m

Retain
simulations
whose SS are Parameter
close to estimation
empirical
ones

Calculate

summary
statistics

Model
Selection

Model: Glaciated areas permeable

Suitability

High l

Low

Past Spatially Explicit Demographic Modeling




5000 simulations closest to empirical data retained for parameter estimation

. ] z
G - - R ;
e / : A o :
o —,/ E o E A 2 4/ :
I I I I 3?4 I I 71'.5 -1.0 -0.5 215 I 3?5 4.
logio(Kmax) logio(m) logio(Nanc)
> 5 : . 5
@ " /\ - /\ - :
c ' ® ' '
[0] ' ' '
8 : \ 3 |
o ! o / ' p g '
I I 3?0 I 3? I I —1'.5 —1'.0 —(;.5 275 I 3?5 I 475
logio(Kmax) logio(m) logio(Nanc)

Barrier Model

Permeable Model

Marginal densijcies: | 4.87 x 10°5 138 x 104
Carex chalciolepis
Bayes factor ~3 (0.65) (0.97)
1.29 x 104 5.68 x 10
Carex nova
Bayes factor ~23 (0.84) (0.08)

Is the most probable model capable of generating the observed data ?
(compare the L of retained simulated data sets to the L for the empirical data: “P-value”)

Massatti & Knowles (2016) Mol

. Ecol.



Refined hypotheses based on taxon-specific traits in
comparative phylogeography

» statistical tests of discordant phylogeographic structure that is
predicted from differences in taxon-specific traits

Massatti & Knowles LL (2014) Microhabitat
differences impact phylogeographic
concordance of co-distributed species:
genomic evidence in montane sedges (Carex

L.) from the Rocky Mountains. Evolution
68:2833-2846.

e Glaciated areas act as barriers,
but only in wetland specialist



-

unities may be characterized by
ies-specific responses to climate change




Inference based on samples from communities

* How we use similarity of the association between genes and
geography across species to test evolutionary hypotheses

* Importance of considering refined-hypotheses based
on taxon-specific traits



Refined hypotheses based on taxon-specific traits in
comparative phylogeography

Soil inhabitants

Aegean
: archipelago

00 400 300 200 100 0
Time (kya)

* key to avoid misleading inference

* bias toward tests of the effects of abiotic factors if rely on
similarity in genetic structure across taxa for hypothesis testing



Genes and Geography Across Species

Neutral loci

wOe L
e
- o - -

R D

similarity of the association between genes and
geography across species — CONCORDANCE —is
typically used to test evolutionary hypotheses



Concordance used in descriptive studies

1 1 | 1 | — |

: 25 20 15 10 05 00
Sequence Divergence (%)

American
Oyster

Gulfl

L 1 1 I 1 1 J

30 25 20 15 10 05 00
Sequence Divergence (%)

Avise 1992



Concordance used in statistical phylogeography

Statistically evaluate a parameterized model
of co-divergence among species using
hierarchical Approximate Bayesian

o
[N)

>
o
o)
©
o)
(®)
E_ 0.4
(-
@)
e
(O]
)
(7]
@)
o

[l Posterior
Prior
0.6 1
I m_

Computation (hABC)

# of divergence events



Concordance to test hypotheses

L

American
Oyster

Gulfl

1 I 1 1 J

3.0

25 20 15 10 05 00
Sequence Divergence (%)

Biogeographic
barrier

74

Avise 1992



Concordance to test hypotheses using hABC

Estimate degree of co-divergence
among species to evaluate
hypothesized barrier associated with
floristic provinces in Cerrado

~ S
\ 8
S ~
S e SR - 5 \ D.miscolobium
( 4 \ : 0.8
( L= \’ ) W P. reticulata
\ ’ / S. convallariodora B
\_/I ‘//—: NNE // 8 i B T aurea
e \' 5 0 A. coriacea
ot \l 55 ’ B B. coccolobifolia
\ 91 g H. stigonocarpa
AN

0

1

\
4
; 4 {
: ! p) \ B H.impetiginosus
L 7’ )
f 8 M H.courbaril
J s
2=\ ¥/CSE
7’
’ ’ {
i
1

% Handroanthus impetiginosus ‘
% Tabebuia aurea

posterior probability

[l Posterior
Prior
0.6 1
0.4
02] I
0.04 . — —

@ Salvertia convallariodora s 8

Plathymenia reticulata / i /
A Hymenaea stigonocarpa S (

Hymenaea courbaril }
» Dalbergia miscolobium ;
® Byrsonima coccolobifolia Z A 0 200 400Km o
® Annona coriacea \\ / e r T T 1 1 2 3 4 5 6 7

s‘/ 0.000 0.002 0.004 0.006 1
# of divergence events

Divergence time (7)

concordance is a hyper-parameter in model that is estimated
from genetic data across multiple species

~J

.3esende et al. (in prep)



Concordance to test hypotheses of co-expansion
oy -
y §R04

Present ‘l—" i - : ~ | — — q e J
) onous \ \ B EE R (&
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? g . » Ecology Letters, (2016) 19: 1457-1467 doi: 10.1111/ele.12695
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Genes and Geography across species

ﬁwent?

CONCORDANCE

for testing hypotheses
about evolutionary history

* potential for misleading inference by not considering
both biotic and abiotic components



Concordance criteria for hypothesis testing

Hypothesis of simultaneous divergence to

e . msBayes
test whether sea-level oscillations during R e A S —
)
the Pleistocene caused diversification = ,s@hABC approach
(4]
Oaks et al. (2012) Evolution g 0.3
o
S 02
. . . w
Phillipines  / 2 o1
Archipelagol,' o
0'01 3 5 7 9 11 13 15 17 18 21

Number of divergence events

* Inferred the distribution of divergence times
among 22 pairs of co-distributed vertebrate taxa

' -
-
-
4 -
-

changes in connectivity/isolation of - /\: - - Ak - -7 /™ - -f\ - - -
islands with sea-level changes (light
versus dark grey outlines)

(w) |9A3| eas

400 300 200 100 0
Time (kya)



Concordance criteria for hypothesis testing

Hypothesis of simultaneous divergence to
test whether sea-level oscillations during
the Pleistocene caused diversification

Performed a suite of simulation-based power analyses

msBayes dpp-msbayes
LT e o S o S S S R B e s e e e e e e e e s e S e e e e e e e e e e e e e e s s e B

0.4 biased 11 corrected

0.3

0.2

posterior probability

0.1

-. - .

9 11 13 16 17 19 21 1 3 5 7 9 11 13 15 17 19 21

AAAAAAAAAAAAAAA

Number of divergence events
(Oaks et al., 2013; Oaks, 2014)

Should this be interpreted as a rejection of the “species pump” model of
diversification in which sea-level changes drive divergence?



Hypothesis of phylogeographic concordance Is TOO generic

Hypothesis of simultaneous divergence to
test whether sea-level oscillations during
the Pleistocene caused diversification

Phillipines k‘
Archipelago g **3

¥ NS

(Oaks et al., 2013; Oaks, 2014)

Concordance is arguably too generic of a hypothesis across these
disparate taxa to test the “species pump” model of divergence.



%ric Refined hypothesis of phylogeographic concordance
* a study design that considers taxon attributes

Hypothesis of simultaneous divergence to
test whether sea-level oscillations during
the Pleistocene caused diversification

Phillipines k’
Archipelago g **3

? ..." N‘




Refined models of phylogeographic concordance to test the “species pump” model

Aegean
archipelage

I Currentdryland
[] 120 m isobath

' [] 0to-30m B -90to-120m

13 species of darkling beetles
[]-30to-60m Il below -120m

(Coleoptera: Tenebrionidae)

Papadopoulou & Knowles(2015) Mol. Ecol.



e taxa differ in their soil associations

archipelagc

[C]Sandy habitats
B “Soil” habitats

Ephemerality of sand habitats may supersede
effects of sea-level connections!

Soil — stable habitat

w7

Generalists on

both soil & sandi
* uniform trophic ecology

& inherent dispersal abilities | PaTadopoquu & Knowles(2015) Mol. Ecol.




Different degrees of structure of mtDNA gene trees suggestive of differences in habitat stability

Soil — stable habitat generalists
both stable

and disturbed
habitats

Bl Northern Islands bathymetrically separated by 95m trench from [l Southern islands



Degree of lineage sorting correlated with duration of island connections?

1.0
1.0
1
o
oo
o
o

0.8

genealogical sorting index (gsiT)
. 0.6
|
[e]
o

0.8

0.6

genealogical sorting index (gsiT)

0.4
|
o
o

0.2

T T T T T T T
20 40 60 80 20 40 60 80

relative duration of island connections (%) relative duration of island connections (%)

Soil — stable habitat: R?,4=0.48, p<<0.001

Model comparisons in subsequent analyses also identified the relative duration of island
connection in combination with habitat type as the best predictors of genealogical sorting
(in contrast to other explanatory variables such as body size or island size) based on AICs

Papadopoulou & Knowles (2015) Mol. Ecol. 24: 4252-4268



Refined hypothesis for tests of concordance that focus on stable-habitat taxa

Test of simultaneous divergence

[ | posterior probability
[] prior probability

probability
0.4

1e1qey 3|qels — |10S

]

1 2 3 4 5 6

¥ (number of divergence events)

hABC: hierarchical Approximate Bayesian Computation;
Implemented in dpp-msbayes (Oaks, 2014)

By focusing on ecologically equivalent taxa, test of concordance
supported the species pump model of divergence

Papadopoulou & Knowles (2015) Mol. Ecol. 24: 4252-4268



Generic hypotheses of global phylogeographic concordance

No evidence for simultaneous divergence

0.35
|

[ posterlor probability
[ ] prior probability

o “m|mlﬂlﬂlﬂ i

8910111213

probability

1

¥ (number of divergence events)

hABC implemented in
dpp-msbayes (Oaks, 2014)

Papadopoulou & Knowles (2015) Mol. Ecol. 24: 4252-4268



Generic hypotheses of global phylogeographic concordance

No evidence for simultaneous divergence

0.35
|

[ posterlor probability
[ ] prior probability

o “m|mlﬂlﬂlﬂ i

8910111213

probability

1

¥ (number of divergence events)

Ephemerality of
sand habitats!

Lack of g e of species

concor del of

[C0Sandy habitat .
A divergence ???

M “Soil” habitats

Papadopoulou & Knowles (2015) Mol. Ecol. 24: 4252-4268



Refined hypotheses based on taxon-specific traits in
comparative phylogeography

Soil— stable habitat

-
Aegean '
archipelago
b 2&: P < v pe
> : g“
" =
" <
&) al
l EP -
I ", I » I b I » ] s T
00 400 300 200 100 0
Time (kya)

* refinement of the expectation for concordance is needed for
concordance itself to be a meaningful metric

* reduced predictive power of generic hypotheses — their rejection

leads to inconclusive statements that do not offer particularly
meaningful insights

Papadopoulou & Knowles (2016) PNAS



e comparative phylogeographic methods are designed to
quantify congruence, rather than gain insights from
discordant patterns

- Indirectly encourages users to emphasize
idiosyncratic aspects of history!

dpp-msbayes
? lllllllllllllllllllll
T_EU
g - ad hoc interpretations
Q of discordance
ke
(3
3
e T 1 < NEED development/application
# of methods for statistical
7 9 11 13 15 17 19 21 . .
errgeme e — evaluation of phylogeographic

discord as an expectation

Papadopoulou & Knowles (2016) PNAS



Refined hypotheses based on taxon-specific traits in
comparative phylogeography

* Model formulation is a way of communicating our expert
knowledge to statistical apparatus to test hypotheses



Biological insights:
(i) hypotheses that capture processes structuring genetic variation, and
(i) model-based approaches to evaluate statistical support for alternative hypotheses

affect responses to | o \S
climate change Role of habitat stability in

Massatti & Knowles (2014, 2016) structuring genetic variation
Evolution, Mol. Ecol. He et al (2013) Evolution

J Present versus past distributions

as drivers of divergence
Knowles & Massatti ( 2017) Ecography

P

Extent of distributional shifts or rate of climatic change

as determinants of concordant patterns of genetic structure

Knowles et al. (2016) J. Biogeogr.
He et al. (2017) Mol Ecol.




Biological insights:
(i) hypotheses that capture processes structuring genetic variation, and
(i) model-based approaches to evaluate statistical support for alternative hypotheses

affect responses to R
climate change Role of habitat stability in

Massatti & Knowles (2014, 2016) structuring genetic variation
Evolution, Mol. Ecol. He et al (2013) Evolution

“J Present versus past distributions

as drivers of divergence
Knowles & Massatti ( 2017) Ecography

£t /
< L

e . oy o e
w 3 ! P ¥ | 1554
e 17 S

Extent of disributioa shifts or rate of climatic change
as determinants of concordant patterns of genetic structure

Knowles et al. (2016) J. Biogeogr.
He et al. (2017) Mol Ecol.



“The purpose of models is not to fit the dat
but to sharpen the questions.”

- Samuel Karlin




Evolutionary applications of model-based analyses:

(i) Inferring species boundaries (aka species delimitation)
(ii) Phylogenetic inference (and beyond the species tree)
(iii) Biogeographic study

(iv) Phylogeography

(v) Adaptive evolution




Myotis lucifugus

Little brown bats are widespread in
North America and were the most
abundant species in the eastern US
prior to white nose syndrome
(WNS), which is caused by
introduced fungal pathogen




Little brown bats decimated by white nose syndrome (WNS)

Population declines > 90% since introduction
of fungal pathogen that causes WNS

Dead bats in underground
hibernation sites (shown here
on the floor of a mine)
o

Others leave hibernating sites
prematurely, like these dead bats on
the outer screen of a house < 1 km
from a hibernation site (note the
snowy landscape).



Survival of the species may
ultimately depend upon its
capacity for adaptive change

* Compare the genetic
makeup of wild survivors
and non-survivors of WNS
to tests for adaptive change

Myotis lucifugus Giorgia G. Auteri

L X

Auteri GG, Knowles LL (2020) Decimated little brown bat
population show potential for adaptive change. Scientific
Reports. 10:3023. doi.org/10.1038/s41598-020-59797-4 el BT R

MICHIGAN



https://doi.org/10.1038/s41598-020-59797-4

Studied geographically isolated population of little brown bats

WNS arrived in 2014

2 hon-survivor
Ysurvivor

A el

* RADseq: 14,345 loci, 19,797 SNPs



Evidence of strong genetic drift caused by the massive population losses in little brown bats.

3 - PCA of survivors of WNS (in blue)
ol . ° .....‘q: »  with non-survivors (in red)
] ¢ projected onto the PC axes

T T T T
0 100 200 300
PC1

* 14,345 SNPs and 33 individuals



Evidence of strong genetic drift caused by the massive population losses in little brown bats.

¢ e 4%e° ° .
S » ’ -'-,"f. Survivor
T F=0.04
0 100 200 300 SE £0.0001

Quantified rate of evolutionary change
from inferred ancestor
(using F-model in STRUCTURE)

Non-survivors

>/ F=0.0006
SE + 0.0003



To identify genetic changes among individuals that might have
contributed to their survival of WNS, as opposed to changes due
to strong genetic drift, used an Fc-outlier approach

FOXP2 B
0.6 /
>_*
0.41
I-EJ GABARB1 CGMP-PKI

N S i

0.2 . MR :. s . %,
% ...‘:;..:"? f. ::.-‘ '.. .:t:“., '.".ﬁ: ® "‘ ‘ :

| W ailtiihi iR s

Allgnment position (Mbp)
¢ alternating red and blue mark different genomic scaffolds

*signature of selection can be detected by levels of genetic differentiation
at a gene that exceeds background levels across the genome



Links between metabolic demands and survival

regulating cellular metabolism;

has also long been suspected to F9XP2
be involved in hibernation
pathways involving cellular metabolism
0.4 and breakdown of fat
u‘:’ GABARB1 CGMP-PKI
[ J ./ @ L /1-
________________________________ BBt i O e 1 s
0.2] : o © Sl ; :. . :
°:L 2‘:;.0::'.?. f 'Y o' ‘r (‘ :‘:'xc¢ '.."é: :..(.
. f( ¥ Al i
0.0 “i[ll lﬁ “‘rﬂ }Fh t( (ﬂl ' .«‘:"5“'““' e
0.0 0.6

Allgnment position (Mbp)

Physiological functions that make immediate sense in an adaptive
context—deaths from the WNS fungus are a result of too frequent
arousals from hibernation that causes starvation.



Links between metabolic demands and survival

associated with vocalizations, and
echolocation in bats
regulating cellular metabolism;

has also long been suspected to F9XP2
be involved in hibernation
pathways involving cellular metabolism
0.4 and breakdown of fat
9 GABARB1 CGMP-PKI
= / . 4
L o e e e e e e e e e e e e e s it st I 1 8 ot i B i
0.2 : ] ; ° s ; :o ° : . o . © ° ’o . .
*i (s w3 Sl
.| Kt mummm Bl

Allgnment position (Mbp)

Variation in calls is closely associated with type of prey and the habitat
bats must navigate, potentially adaptive shifts might result from
selective pressures related to proficient hunting or prey preferences



Too soon to claim that the species will be “saved”
via an evolutionary rescue effect.

brown bats is particularly notable on several fronts:

<O Steve Bylame


http://www.dreamstime.com/Stevebyland_info

Too soon to claim that the species will be “saved”
via an evolutionary rescue effect.

brown bats is particularly notable on several fronts:

<O Steve B land

* We detected selectively driven divergence, despite strong genetic
drift caused by the massive population losses in little brown bats.


http://www.dreamstime.com/Stevebyland_info

Too soon to claim that the species will be “saved”
via an evolutionary rescue effect.

brown bats is particularly notable on several fronts:

“0O Steve Bylaing

* We detected selectively driven divergence, despite strong genetic
drift caused by the massive population losses in little brown bats.

* These evolutionary changes were detected in less than
three generations since exposure to WNS


http://www.dreamstime.com/Stevebyland_info

Too soon to claim that the species will be “saved”
via an evolutionary rescue effect.

brown bats is particularly notable on several fronts:

“© Steve Bylamel

* We detected selectively driven divergence, despite strong genetic
drift caused by the massive population losses in little brown bats.

* These evolutionary changes were detected in less than
three generations since exposure to WNS

* Putatively selected loci and their potential adaptive functions point
to multifaceted nature of selection (i.e., genes linked to physiological

and behavioral traits, whose roles vary across habitats of highly
seasonal environments)


http://www.dreamstime.com/Stevebyland_info

Evolutionary applications of model-based analyses:

(i) Inferring species boundaries (aka species delimitation)

(ii) Phylogenetic inference (and beyond the species tree)
(iii) Biogeographic study
(iv) Phylogeography

(v) Adaptive evolution



Species delimitation S, A v~
(discovery)
SRS - e

Learning goals:

* Describe applications of the multispecies m m‘
coalescent (MSC) to species delimitation &

* Explain the merit/limitations of the

multispecies coalescent (MSC) to deIimitationm

* Describe (i) how over-estimation of species '
numbers might occur with applications based |

on the MSC (ii) what determines the degree of |
overestimation o

* Explain the relevance of the speciation
process to delimitation approaches m




Hypotheses about species boundaries

e

PR



Model-based inference of species boundaries

genus Dynastes
5cm

D. hyllus (hy) D. granti (gr) (=27)

T—

— D. tityus (ty) D.maya (ma) D. moroni(mo)

5 species -

Statistical evaluation of a -
. . D. h. bleuzeni (blu) D. h. trinidadensis (tri)
hypothesized species

delimitation model m/m.

D. h. morishimai (mor) D. h. lichyi (lic)

o <. TN

D. h. paschoali (pas) D. h. ecuatorianus (ecu)

B Sa~ N

D. h. occidentalis (occ) D. h. septentrionalis (sep)

Huang & Knowles (2016) Syst. Biol. D. h. reidi (rei) D. h. hercules (her)

1 species 4




Model-based inference of species boundaries

5 recognized species 1 recognized species
In North America In South America
White Hercules Subspecies of Giant Hercules
. - - . ~ 24 4 g 14 ¥ o -4
gr hy t ma mo blu tri lic mor | occ sep pas

1.0\ 1.0 1.0\ 1.0
1.0¥ 1.0 1.0¥ 1.0
1.0\ /1.0
1.0¥1.0

/ Probabilities of
T delimitation hypothesis Lo/
under the MSC model 10 10

.

re

.

\/

genus Dynastes Huang & Knowles (2016) Syst. Biol.




Model-based inference of species boundaries

5 recognized species 1 recognized species
In North America In South America
White Hercules 10 inferred species of Giant Hercules

33430 44/.2/)@?54@??/)

10 10
1.0/ 10

1.0y 1.0 1.0y1.0
10y 1.0 1010

oy
/ Statistical equivalency of
L\/L0|  species status between North \Lo¥

and South American taxa .

genus Dynastes Huang & Knowles (2016) Syst. Biol.



Model-based inference of species boundaries

5 recognized species 1 recognized species
In North America In South America

White Hercules 10 inferred species of Giant Hercules

33430 44/.2/)@?54@??/)

10 10
1.0/ 10

1.0y 1.0 1.0y1.0
10y 1.0 1010

oy
/ Statistical equivalency of
L\/L0|  species status between North \Lo¥

and South American taxa .

genus Dynastes Huang & Knowles (2016) Syst. Biol.



Integration across data types to corroborate delimited taxa
genus Dynastes
5cm

* Quantification of phenotype
D. hyllus (hy) D. granti (gr) (=27)

Thoracic horn (White Hercules) Thoracic horn (Giant Hercules)

L . 005 %Mak’.‘ i & Ti—

BN D. tityus (ty) D. maya (ma) D. moroni (mo)

° ° N
1 .. i .‘:~. . < .' o' OO..: ‘
o
0.0 & °. vl - . ° .
°

0.1

PC2 (17%)
PC2 (10%)

s
—_—

01 e . ) b, bleuzeni(blu) D. h. trinidadensis (tri)
mm -0.25 ”
0.2 -0.1 - (250%) 0.1 -0.2 Pc1:)7(;‘y) 0.2
o4y ® Geography D. h. morlshlmal(mor) D. h. lichyi (lic)

| (present and past)

S <. TN

D. h. paschoali (pas) D. h. ecuatorianus (ecu)

r, * Ecology %m
. t N

D. h. occidentalis (occ) D. h. septentrionalis (sep)

N S Sawe N

D. h. reidi (rei) D. h. hercules (her)

0 1000 2000

— . Kilometers Huang & Knowles (2016) Syst. Biol.



Integrative data also provides insights into the divergence process

Speciation Continuum Species Tree

grvs. hy mo vs. ma ma vs. ty ma vs. hy

N (0 _ ? ? Grey Zone ;
B A E

Position of
taxa on the
speciation
continuum

Genetic or Genetic AND
Morphological [Morphological
Differentiation | Differentiations

Geographic
overlap

lic lic vs.

lic vs. ecu

blu vs. tri sep vs. occ ecu vs. pas lic vs. ecu lic vs. occ

Huang & Knowles (2016) Syst. Biol.



Transformative potential of model-based analyses:

- Codon substitution and analysis of natural selection
- Adaptive molecular evolution
- Divergence time estimation and biogeographic analysis

- Phylogenetic inference

- Species delimitation based on genetic data alone
- Demographic inference

....models are how we communicate
our knowledge to a statistical apparatus



Transformative potential of model-based analyses:

- Codon substitution and analysis of natural selection

- Adaptive molecular evolution

- Divergence time estimation and biogeographic analysis
- Phylogenetic inference

- Species delimitation based on genetic data alone
- Demographic inference

* All models are flawed..., some are more or less useful

....models are how we communicate
our knowledge to a statistical apparatus



Transformative potential of model-based analyses:

- Codon substitution and analysis of natural selection
- Adaptive molecular evolution

- Divergence time estimation and biogeographic analysis
- Phylogenetic inference

- Species delimitation

- Demographic inference
(e.g., estimate divergence
between population A and B)

A B C

Model of gene lineage divergence under
an assumption of a molecular clock



Transformative potential of model-based analyses:

- Codon substitution and analysis of natural selection
- Adaptive molecular evolution

- Divergence time estimation and biogeographic analysis
- Phylogenetic inference

- Species delimitation

- Demographic inference
(e.g., estimate divergence
between population A and B)

A1 A2 A3 B1 B2 C1

A B C

Coalescent model of
gene lineage sorting process



Transformative potential of model-based analyses:

- Codon substitution and analysis of natural selection

- Adaptive molecular evolution

- Divergence time estimation and biogeographic analysis
- Phylogenetic inference

- Species delimitation

- Demographic inference
(e.g., time of divergence)

[ ] ® o
A1 A2 A3 B1 B2 C1

A B C

* All models are flawed..., some are more or less useful

....depending upon how effectively they represent
our expert knowledge of evolution



Transformative potential of model-based analyses:

- Codon substitution and analysis of natural selection
- Adaptive molecular evolution
- Divergence time estimation and biogeographic analysis

- Phylogenetic inference
- Demographic inference
(e.g., time of divergence)

[ ] ® o
A1 A2 A3 B1 B2 C1

A B C

* All models are flawed..., some are more or less useful

....depending upon how effectively they represent
our expert knowledge of evolution



Multispecies coalescent (MSC) model used to evaluate different

species delimitation hypotheses
Yang and Rannala (2010) PNAS

TABC

C :l 2 species

TAB

C1

A B C :l 3 species

Different species delimitation hypotheses are formulated as competing statistical models
and inferred from genetic data through Bayesian model selection (i.e., through calculation
of posterior probabilities of a model), as in the popular program bpp



Delimitation with
the Coalescent

* Have a gene tree




Coalescent Theory Applications in a Nutshell

 Makes predictions about the waiting time between coalescence events
based on population size and sample size.

- “coalescence events” (backward-time) == “divergence events”
(forward-time)

« Predictions are based on assumptions of particular properties of the
population that the genes (or individuals having those genes) are
evolving.

Deviances in observed waiting times from that predicted can be used
to make inferences about deviances in actual population properties
from assumed Wright-Fisher panmictic population



How Does Structuring Change the Coalescent Times?

 Recall that the coalescent makes
predictions about the timings to

coalescence for genes sampled at
random from a panmictic
SREAEEE population.

K__-__'ﬁme =t1




How Does Structuring Change the Coalescent Times?

 Recall that the coalescent makes
predictions about the timings to
coalescence for genes sampled at
random from a panmictic

population.
Time =t1

« What happens if there are
restrictions to panmixia”?

Gene1 Gene?2



How Does Structuring Change the Coalescent Times?

\  Recall that the coalescent makes
e Time =12 predictions about the timings to
coalescence for genes sampled at
T random from a panmictic
_ Time =t1 population.

RESTRICTION \ « What happens if there are
restrictions to panmixia?

Gene | Gene2 - Then the timings to coalescent
get extended




How Does Structuring Change the Coalescent Times?

\  Recall that the coalescent makes
e Time =12 predictions about the timings to
coalescence for genes sampled at
T random from a panmictic
Time =t1 population.

e \ What happens if there are
restrictions to panmixia?

Gene | Gene2 - Then the timings to coalescent
get extended

« This is the basis of the
multispecies coalescent, MSC



Delimiting Units with the MSC

| <

Coalescence
times
— deeper than
predicted
for panmictic
population

Coalescence

times
— as predicted

for panmictic
population



Delimiting Units with the MSC

Detected
— restrictions
in gene flow

Coalescence
times
as predicted
for panmictic
population
 the MSC models the extensionsin timings of coalescent events asdisruptions of

Wright-Fisher panmixia.

* |t fits a“containing tree” to these disruptions (i.e., 3 species in this example)



Explosion of applications using the MSC for delimitation
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Pros of species delimitation under MSC

Model-based inference

* Can delimit species before reciprocal

monophyly of alleles or fixed differences
Knowles & Carstens (2007) Syst. Biol.

* Still detects lineages under low gene flow
Zhang et al. (2011) Syst. Biol. g 5TE =

A B C

* Accuracy of species delimitation to sampling can be
evaluated (i.e., will more data change status)

* De facto standardization for objectively delimiting taxa (i.e., data
treated equally among all living things and avoid subjectiveness of
what characters to measure)  Fujitaetal. (2012) TREE

* Can take into account uncertainty in gene trees
Yang & Rannala 2010



Model-based inference: probability of different hypotheses
about species boundaries based on genetic data alone!

Togo Hills
Guinean
Rain Forest

Bayesian species tree estimates

10-species model

4-species model

Hemidaciylus fasciatus

1 ® ® ® Congo (south)

[ © @ @ Congo (north)

1 O @ @ Guinean Forest

O Togo Hills

Congolian
Rain Forest

GA (i) Hemidactylus coalescens sp. nov.
Holotype. Zoologisches Forschungsinstitut und Museum
_ Alexander Koenig (ZFMK) 87680, adult male;
Cameroon, Campo Region, Nkoelon, 2.3972° N,
10.04515°E, 85 m; collected by Michael F. Barej
and Julia Wurstner, 27 October 2007. Paratype =
ZFMK 87679.

Diagnosis. This species includes all populations that
cluster with those from the southern portion of the Con-

Leache & Fujita (2010) Proc. R. Soc. B.

golian rainforest included in this study (southern
Cameroon, Gabon and Congo), with strong support in
the Bayesian species delimitation model.

Erymology. This species is named after the coalescent
process used to delimit the species.



Data-informed summary suggests problems.....

A"/ Coalescent-based
species delimitation

°
A1 A2 A3

Most newly discovered species go undescribed.

* Less than 30% of researchers applying MSC models
made taxonomic recommendations!

* Less than 25% of researchers applying MSC models
actually use results to describe new species!

Carstens et al. 2013



the multispecies coalescent for
delimiting species

4

e All models are flawed...
some are more or less useful.

Number of species

Estimate Actual
Sukumaran & Knowles (2017) PNAS



No genetic distinction that separates
species versus population divergence

40
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%

20
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/A
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75

m species (n=100)
N populations (n=240)

u subpecies (n=16)

/A
0125 0375 1‘ 0.75 1.25 175 2.25 2.75 3.5 3.75 4.25 4.75 >5.25

U= T (reflecting the time since separation)

2.25 2.75 325 375 428 475 525

2NM (reflecting the amount of gene exchange)

Pinho and Hey(2010) Evolution



Eventually all species concepts agree...so
no big deal right?!?

2 Species general lineage concept

e SCO
— SC8
—— SC7
— SC6
—— SC5
SC4
SC3
SC2
SC1

1 Species

de Querroz 2005, 2007



* Not all lineages become species!
And multiple population lineages of the same species!

SpA (multiple population lineages of same species)
)\ SpB  SpC SpD

*4 species (represented by different
colors), and protracted process

A
6 distinguished
genetic lineages
\4

/
speciation _ / /

duration

time

s |

splitting extinction merging




The MSC dominates the field...

How bad is the confounding of
population verus species divergence?

Number of species

Illustration credit: John Megahan

Estimate Actual
Sukumaran & Knowles (2017) PNAS



Multispecies coalescent (MSC) model used to evaluate different

species delimitation hypotheses
Yang and Rannala (2010) PNAS

TABC

C :l 2 species

TAB

C1

A B C :l 3 species

Different species delimitation hypotheses are formulated as competing models and
inferred from genetic data through Bayesian model selection (i.e., through calculation of
posterior probabilities of a model), as in the popular program bpp



Simulate data to account for differences in speciation duration

(i.e., speciation is not instantaneous) Sukumaran Syvles (2017) PNAS
I R
Splitting events such as this are o
initiation of speciation through, speciatio
e.g., population isolation yation
T *

Color change indicates
completion of speciation and
development of true species

from incipient species ’ |
(i.e., lineage conversion)/

splitting

Model
with
8vs 3

species

Does the MSC accurately -
delimit species?



Degree of overestimation of species richness under the MSC

Rate new species form 0 001 01 1 10 1000

JU=-

N

Inferred number of species
under the MSC

1IL’ ll'-l
Simulated Number of Species

Sukumaran & Knowles (2017) PNAS



Degree of overestimation of species richness under the MSC
depends on the speciation duration

Rate new species form 0 001 01 1 10 1000

JU=-

Formation of
independent species

«

N

Speciation
duration

—
|
~

~

- i Initial population splitting

Inferred number of species
under the MSC

1IL’ ll'-l
Simulated Number of Species

Sukumaran & Knowles (2017) PNAS



MSC powerful model for detecting genetic structure

Inferred number of species
under the MSC

- -
=1 2 population +
TR e F,.;.-‘)' s species
?r'f" divergence
Simulated number of species Simulated number of lineages

Conversion Rate 0.001 0.1 1 10 1000

Sukumaran & Knowles (2017) PNAS



MSC powerful model for detecting genetic structure

population +

Inferred number of species
under the MSC

species
.(‘J -y .
. divergence
Simulated number of species Simulated number of lineages

Conversion Rate 0.001 01 1 10 1000

HOWEVER, the MSC is not capable of distinguishing
genetic structure due to population versus species divergence

Sukumaran & Knowles (2017) PNAS



Problems with species delimitation under the MSC

* MSC detects structure — not species
Sukumaran & Knowles (2017) PNAS

(different statistical delimitation methods all based
on the MSC, which also means seeking consensus

across methods is not a good way to fail) ,A
See Rannala (2015) Current Zoology 61, 846-853 e

* “Robustness” to lineage detection with low levels of gene flow
is not the same as accurate species delimitation

* Sensitivity to sampling (e.g., sparse geographic coverage
Over-SplitS Species) Chambers & Hillis (2020) Syst. Biol.

* MSC is not a de facto standardization for delimiting taxa:

degree of over estimation varies depending on speciation process
Sukumaran & Knowles (2017) PNAS



Accurate species delimitation cannot be achieved with
current models based on MSC

Delimitation under the MSC:
genetic structure = species

* Don’t run MSC and add a caveat — what’s the point!’

* STOP reporting about all this “cryptic” diversity



Model-based delimitation:

Delimitation under the MSC: mm‘
* genetic structure = species ’ml /m

* Relying on heuristics to interpret
results from current genetic methods
(e.g., bpp) is not the answer; does
not validate the MSC for species
delimitation




Ad hoc heuristics to interpret results from MSC-based models for delimitation

e Genealogical sorting index*: 27/6
(i.e., population divergence time relative to the population size)
Cummings et al. (2008) Evolution 62-9: 2411-2422

* use population divergence parameters (e.g., distantly related
species, lots of migration)*

*Jackson et al. (2018) Syst. Biol.
*Leache et al. (2018) Syst. Biol.

These heuristics do not validate
the MSC for species delimitation



Using diverse sources of data for inferring species boundaries has a long
systematic tradition, but not with model-based inference.

Joint analysis of morphology and
genetic data!

Solis-Lemus C, Knowles LL, Ané C (2014) Bayesian species
delimitation combining multiple genes and traits in a unified
framework. Evolution 69:492-507.



Hypotheses about species boundaries

e

PR



PLOS COMPUTATIONAL BIOLOGY
RESEARCH ARTICLE

Incorporating the speciation process into
species delimitation

Jeet Sukumaran'**, Mark T. Holder?®, L. Lacey Knowles®*

* We model the formation of new population lineages and their subsequent
development into independent species modeled as separate processes

Formation of
independent species

«

Speciation_|
duration

Initial population splitting

PLOS Computational Biology | https://doi.org/10.137 1/journal.pcbi. 1008924 May 13, 2021




PLOS COMPUTATIONAL
RESEARCH ARTICLE

Incorporating the speciation process into
species delimitation

Jeet Sukumaran'**, Mark T. Holder?®, L. Lacey Knowles®*

* We model the formation of new population lineages and their subsequent
development into independent species modeled as separate processes

Formation of
independent species

1|«
* We provide for a way to incorporate current understanding
Spec'af“on- of the species boundaries in the system through specification
duration of species identities for a subset of population lineages

Initial population splitting

PLOS Computational Biology | https://doi.org/10.137 1/journal.pcbi. 1008924 May 13, 2021




DELINEATE: a species delimitation method which makes
probabilistic statements about whether or not distinct lineages
are members of the same species

Population . .
Lﬁeage Population Lineage Tree

Delimitation
(BPP, StarBeast, etc.)

* Lineages are Wright-Fisher populations within which
the neutral coalescent process dominates

Genomic Data

* Boundaries between lineages are structure imposed by
ancestral population splitting or isolation

Sukumaran, Holder, Knowles (2021) PLoS Comput Biol



DELINEATE

Species Partition

TP 0000000000000 00000

Different species partitions

Genomic Data Pf%’gggn Population Lineage Tree repr.es-entl.ng different -
: ElEE Delimitation delimitation models L
| (BPP, StarBeast, etc) DELINEATE

Sukumaran, Holder, Knowles (2021) PLoS Comput Biol



DELINEATE

* probabilities of different partitions are calculated conditional on the lineage tree
and the speciation dynamic parameters that capture the tempo of speciation

Species Partition Probability
™Th0000000000 [ 00000
Different species partitions
Genomic Data Pfﬁggggn Population Lineage Tree repr.esgntl.ng different -
IR Delimitation delimitation models L
! (BPP, StarBeast, etc) DELINEATE 0.11
>
[ ] [ ]
[ J [ ]
[ J [ J

Sukumaran, Holder, Knowles (2021) PLoS Comput Biol



DELINEATE

* probabilities of different partitions are calculated conditional on the lineage tree
and the speciation dynamic parameters that capture the tempo of speciation

Protracted Birth Death (PBD)

model of the speciation process

T

Speciation_|
duration

*

Speciation completion
rate, o

v\l’nitial population splitting, A

Different species partitions
representing different
delimitation models

=g

Species Partition Probability

0.76

* This process, as modeled in DELINEATE, is initiated by a stochastic lineage
splitting process that extends over a duration of time that is determined
stochastically by a speciation completion rate parameter

Sukumaran, Holder, Knowles (2021) PLoS Comput Biol



PLOS COMPUTATIONAL BIOLOGY

RESEARCH ARTICLE

Incorporating the speciation process into
species delimitation

Jeet Sukumaran®'®*, Mark T. Holder?®, L. Lacey Knowles>®

* We retain the rational of a comparative context in our
computational framework: specification of species identities
of a subset of population lineages that are well studied

« e &

Collect sequences of lineages from well
described species in addition to those less
Each | studied, which are the focus of inference of
represent species boundaries
species delimitation

PLOS Computational Biology | https://doi.org/10.137 1/journal.pcbi. 1008924 May 13, 2021




DELINEATE

* Preferred partition with highest probability

Species Partition Probability
™The000000000 ) 00000
Different species partitions
Genomic Data Pf%’gggn Population Lineage Tree repr.esgntl.ng different -
U I Delimitation delimitation models e
(BPP, StarBeast, etc.) DELINEATE 0.11
>
[ ] [ ]
[ ] [ ]
[ ] [ ]

Sukumaran, Holder, Knowles (2021) PLoS Comput Biol



Accuracy: recovery of true species partition for different sized
trees with different numbers of undescribed lineages

1.0 -
a
¢ Speciation Completion Rate
¢ 2 @ Low (0.01 x Birth Rate)
o ® Moderate Low (0.05 x Birth Rate)
08 " ® Moderate (0.10 x Birth Rate)
. ) X @ Moderate High (0.50 x Birth Rate)
k2 " . 5 o Very High (1.00 x Birth Rate)
"g 0.6 » o @ estimated # specified
5. el x [>)
SI ® ®
£ o " . N
] a Specify the species affinities of some of
g' 0.4 7 the population lineages in the input tree
= @ .
| 5 undescribed
a o 5/10 )
lineages
024 ¢ . / \
o B
o x # of known total # of
s
: 5 species lineages
0.0 : -

5/10 15/20 10/20 35/40 30/40 75/80 70/80

Constrained/Total Sukumaran, Holder, Knowles (2021) PLoS Comput Biol



Other implementations/applications of DELINEATE

Quantification of biodiversity with a
model of an extended speciation process

50 -
()
Q
O 4
g 40 . B 02000 . |
Q a
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Y= os o
o &l o$5855" - :
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True number of species

Sukumaran, Holder, Knowles (2021) PLoS Comput Biol



Can estimate the speciation completion rate, g, if input data contains
at least one con-specific statement and one hetero-specific statement

Estimated Speciation Completion Rate

ML estimates of the speciation completion rate, g,

il

0.03

per replicate, and 95% CI

{

0.04 0.05 ana g 2o
True Specnahon Completnon Rate

-
28
4.

|

i
i

—_—e-as D @ ' 8

True Partition Size

- Simulate 60 lineages

- Proportion of species
versus population
lineages varied as a
function of the
speciation duration (i.e.,
3 to 38 species among
the 60 lineages)

10 20 30



Other implementations/applications of DELINEATE

* Integrate across partitions to determine if target populations are new species or
belong to previously described species Species Partition  Probability

W 0.76

Sukumaran, Holder, Knowles (2021) PLoS Comput Biol



Other implementations/applications of DELINEATE

* Integrate across partitions to determine if target populations are new species or
belong to previously described species Species Partition  Probability

W 0.76
* Conduct delimitation without having to specify affinities for

subsets of taxa if apply estimate of speciation completion rate ...

from other independent data (e.g., related clades) in which 0.11
similar speciation dynamics can be assumed >

Sukumaran, Holder, Knowles (2021) PLoS Comput Biol



DELINEATE: a new class of delimitation models that
incorporate the speciation process

* address the proliferation of artifactual species that results as within-species
population lineages, detected due to restrictions in gene flow, are mis-identified
as distinct species (as under the MSC)

 can assign probabilistically lineages of unknown affinities to pre-existing or new species

e we are able to learn not only about species boundaries, but also about the tempo of
the speciation process itself



DELINEATE: the process of population splitting and
species conversion are decoupled

e can ask whether the higher diversity reflects:

* higher rates of population isolation
(perhaps due to landscape complexity or
dynamic geographies), or

* higher rates of development of speciation
isolating mechanisms

* Big Data: Between and within species genetic
structure; specifically, target capture of 15,000 loci
developed from RADseq across 30,000 individuals
across the ranges of 352 species



DELINEATE: a new class of delimitation models that
incorporate the speciation process

By explicitly accounting for restrictions in gene flow not only between, but also
within species, we also address the limits of genetic data for delimiting species.



Sukumaran, Holder, Knowles (2021) PLoS Comput Biol
Limitations of genetic data alone for species delimitation

* Without any information about species affinities for a subset of taxa, or about
speciation dynamics, accurate delimitation is not possible



Sukumaran, Holder, Knowles (2021) PLoS Comput Biol

Limitations of DELINEATE

* Without any information about species affinities for a subset of taxa, or about
speciation dynamics, accurate delimitation is not possible

That is, without incorporating independent
information from other data sources, genetic
data alone is not sufficient for accurate
delimitation of species.

Software: DELINEATE https://github.com/jeetsukumaran/delineate

* Phylogenetic modeling approach that delineates species versus
population lineages under a protracted speciation model



https://github.com/jeetsukumaran/delineate

Skeptical of statements that claim otherwise:

Syst. Biol. 68(1):168-181, 2019
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The Spectre of Too Many Species
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distinctness of the populations signifies the presence of
reproductive barriers or isolation mechanisms. There
seems to be no controversy in assigning species status to
populations that exist in sympatry and are genetically
distinct.

For heuristic delimitation of allopatric species, we
suggest the use of Bayesian parameter estimation. The
genomic data allows reliable estimation of population-
divergence parameters (6s, ts, and Ms), which can then
be used to apply a heuristic definition of species status.

Heuristic Criteria for Species Status

The gdi attempts to use the overall genetic divergence
between two populations affected by the combined
effects of genetic isolation and gene flow. The index
appears to have weaknesses. First, the criterion depends

An tha nAandilatian Aisravranncna Firan valaticrn #a +haa

sequence data. There appears to be no controversy
regarding the use of Bayesian model selection under
MSC or BpP to identify morphologically cryptic species.
For allopatric populations or species, the accurate
estimation of important population parameters should
allow one to apply any empirical criterion for defining
species that the evolutionary biologist entertains. For
these reasons, the MSC model and BPP will continue
to be useful tools in the analysis of genomic data to
better understand biodiversity despite the fact that the
interpretation of these results in assessing species status
may be debated.

SUPPLEMENTARY MATERIAL

Data available from the Dryad Data Repository:
http:/ /dx.doi.org/10.5061 /dryad.t66gq81.



Examine the robustness of the MSC by considering
the geography of genetic divergence

https://becheler.github.io/pages/applications.html Arnaud Becheler

QUEZTAL: biologically informed demographic model over evolutionary time scales

Flux de propagules @ Taille de population N :
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informed by environmental heterogeneity across landscape

] | | |
120 125 130 135 140 145

Becheler & Knowles (in prep)


https://becheler.github.io/pages/applications.html

Geographic predictions of genetic structure
associated with IBD, IBE, barriers, and stochastic population extinction

 Inform sampling strategy to avoid misinterpretations

about genetic divergence

Robustness of the MISC
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Map of estimated genetic structure under the MSC

(implemented in bpp where genetic divergence
between sampled locations across the map to
coordinate at x)

Posterior probability of 2 lineages



Geographic predictions of genetic structure
associated with IBD, IBE, barriers, and stochastic population extinction

Robustness of the MISC

=t
'

Y1 .. y
.

| | I | | |
12n 128 12N 12K 14n 14K

Map of estimated genetic structure under the MSC

(implemented in bpp where genetic divergence
between sampled locations across the map to
coordinate at x)

Posterior probability of 2 lineages

* Avoid overestimation of species diversity by conflating genetic
structure within species with genetic divergence between species



Geographic predictions of genetic structure
associated with IBD, IBE, barriers, and stochastic population extinction

model doesn’t predict
genetic structure undera
single|species

0.8

0.6
0.4
0.2

b
22 20 18 16 14
|

Posterior probability of 2 lineages

REJECT model of no speciation

* Identify genetic structure that support hypothesis of speciation
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