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Abstract

Motivation: The multispecies coalescent model is now widely accepted as an effective model for incorporating vari-
ation in the evolutionary histories of individual genes into methods for phylogenetic inference from genome-scale
data. However, because model-based analysis under the coalescent can be computationally expensive for large
datasets, a variety of inferential frameworks and corresponding algorithms have been proposed for estimation of
species-level phylogenies and associated parameters, including speciation times and effective population sizes.

Results: We consider the problem of estimating the timing of speciation events along a phylogeny in a coalescent
framework. We propose a maximum a posteriori estimator based on composite likelihood (MAPCL) for inferring
these speciation times under a model of DNA sequence evolution for which exact site-pattern probabilities can be
computed under the assumption of a constant h throughout the species tree. We demonstrate that the MAPCL esti-
mates are statistically consistent and asymptotically normally distributed, and we show how this result can be used
to estimate their asymptotic variance. We also provide a more computationally efficient estimator of the asymptotic
variance based on the non-parametric bootstrap. We evaluate the performance of our method using simulation and
by application to an empirical dataset for gibbons.

Availability and implementation: The method has been implemented in the PAUP* program, freely available at
https://paup.phylosolutions.com for Macintosh, Windows and Linux operating systems.

Contact: peng.650@osu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Though numerous methods have recently been developed for
estimating species-tree topologies, methods for estimating the
associated speciation (divergence) times are less well-developed.
Traditionally, divergence times have been obtained using maximum
likelihood (ML) estimates of branch lengths from a concatenated
alignment, but this approach has been shown to produce systematic
errors because it fails to account for variation in gene genealogies
and their associated gene divergence times. As a result, some node
ages are overestimated while others are underestimated (Ogilvie
et al., 2017).

In contrast to concatenation, coalescent-based methods explicitly
model variation in individual gene genealogies under the multispe-
cies coalescent (MSC) model (Hudson, 1983; Rannala and Yang,
2003). Several widely used implementations provide estimates of
either speciation times or internal branch lengths in addition to

estimating the species-tree topology. Of the methods that infer spe-
cies trees from multilocus data using estimated gene trees (‘summary
statistic methods’ or ‘summary methods’), ASTRAL (Sayyari and
Mirarab, 2016) and MP-EST (Liu et al., 2010) can also provide esti-
mates of internal branch lengths in coalescent units. Branch-length
estimates from both of these methods are statistically consistent (Liu
et al., 2010; Sayyari and Mirarab, 2016), but consistency has only
been shown to hold when the input data consist of an unbiased sam-
ple of true gene trees. Even if input gene trees are estimated using a
statistically consistent method (e.g. ML), a proof of consistency for
branch-length estimation would either need to allow gene lengths to
go to infinity (violating the MSC assumption of no intralocus recom-
bination) or demonstrate the absence of any small sample bias in
topology estimation, even though such a bias is known to exist for
ML (Roch et al., 2019; Swofford et al., 2001). In fact, both
ASTRAL and MP-EST have been shown to underestimate internal
branch lengths when gene tree estimation error increases (Sayyari
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and Mirarab, 2016). In addition, Yang (2002) showed that phylo-
genetic errors inflate the probability of incongruent gene trees and
lead to biased estimation of internal branch lengths.

An alternative to summary methods is a fully Bayesian approach
that jointly estimates the species-tree topology, speciation times and
effective population sizes using the complete sequence data without
first estimating gene trees for each locus. These methods are imple-
mented in *BEAST/StarBEAST2 (Heled and Drummond, 2010;
Ogilvie et al., 2017) and BPP (Rannala and Yang, 2017; Yang and
Rannala, 2014) for multilocus sequence data, and SNAPP (Bryant
et al., 2012) for biallelic SNP data. StarBEAST2 and BPP differ in
the prior distributions assumed for the species tree, the range of evo-
lutionary models supported, and details of the Markov chain Monte
Carlo (MCMC) strategies used to sample from the posterior distri-
bution. Bayesian methods have the advantage of using all of the
data, but due to reliance on MCMC, they can be very slow for data-
sets with a large number of species and/or genes.

A third class of methods infers species trees directly from the
sequence data without requiring prior estimation of gene trees
for each locus. The most widely used example of this class,
SVDQuartets (Chifman and Kubatko, 2014), is much faster than
fully Bayesian approaches, but it can only estimate the topology of
the species tree. Here, we use some of the theory underlying
SVDQuartets (Chifman and Kubatko, 2015) to derive an estimator
for node ages under the MSC model and the JC69 DNA substitution
model (Jukes and Cantor, 1969), assuming a molecular clock.
Similar approaches have been used to obtain parameter estimates
for two (Andersen et al., 2014) or three (Zhu and Yang, 2021) spe-
cies for fixed phylogenies. Our estimator is not directly connected to
SVDQuartets, apart from being a quartet-based method that oper-
ates under the MSC assumptions. As such, it can be used to estimate
speciation times on trees obtained using any method, although it is
especially relevant for SVDQuartets, which does not intrinsically
provide estimates of node ages or branch lengths.

Our proposed node-age estimator differs from the two-step sum-
mary methods described above by eliminating the step of estimating
gene trees. Instead, it uses the sequence data directly to compute com-
posite likelihoods based on the fit of observed site-pattern probabil-
ities to their expectations under the MSC model. It thus captures
variability due to both the coalescent process and the mutation pro-
cess in a way that the two-step summary methods do not. However,
our method diverges from a full likelihood method in that site-pattern
frequencies are calculated by pooling sites across all loci.
Consequently, when multilocus data are used as input, the coalescent
variation among gene trees and the mutational variance among sites
of the same locus are confounded. On the other hand, by avoiding
MCMC, our method gains a strong computational advantage over
current fully Bayesian methods. Here, we prove that this estimator is
statistically consistent and argue that it is asymptotically normally dis-
tributed. Though the uncertainty in the estimator can be quantified by
the theoretical asymptotic variance predicted by our normality result,
we find that use of the non-parametric bootstrap provides a more
computationally efficient estimate of the variance of the estimates.
The performance and computational cost associated with our method
of speciation time estimation is compared with BPP using simulated
datasets. We use a genome-scale dataset for gibbons (Carbone et al.,
2014; Shi and Yang, 2018; Veeramah et al., 2015) to demonstrate the
performance of our estimator for empirical data.

2 Materials and methods

2.1 Time scales
Speciation times (node ages) represent the amount of time elapsed be-
tween each ancestral node and the present. The amount of time be-
tween any pair of nodes is typically measured in either ‘coalescent
units’ (number of generations scaled by 2Ne, where Ne is the effective
population size) or ‘mutation units’ (expected time to accumulate one
mutation per site assuming a mutation rate l, defined as the expected
number of mutations per site per generation). For speciation times s,
these units can be interconverted using scoal ¼ ð2=hÞsmut or

smut ¼ ðh=2Þscoal, where h ¼ 4Nel. When we assume that a single
value of h applies to the entire tree, age estimates in either units satisfy
the molecular clock. However, if h is allowed to vary over the tree
(e.g. a separate h parameter for each branch), ages measured in coales-
cent units are no longer proportional to time in any sense, and muta-
tion units are more appropriate. For generality, we prefer to use smut,
but there are situations where scoal is more convenient. In order to
simplify our notation below, we drop the subscript on s, and make it
clear in the text which units are being used.

2.2 Site-pattern probabilities
In a four-taxon species tree, there are 44¼256 possible site patterns.
Chifman and Kubatko (2015) show that for the JC69 (Jukes and
Cantor, 1969) model and a four-leaf species tree containing species
a, b, c and d, each site-pattern probability piaibicid for a specific obser-
vation iaibicid ; ij 2 fA;C;G;Tg, can be written as a function of the
mutation-scaled population size (h) parameter and the node ages (s)
in the tree (in coalescent units). Under this model as well as the mo-
lecular clock assumption, the rooted symmetric four-leaf species tree
ðða;bÞ; ðc;dÞÞ has nine distinct site-pattern probabilities: p1¼pxxxx,
p2¼pxxxy¼pxxyx, p3¼pxyxx¼pyxxx, p4¼pxyxy¼pyxxy, p5¼pxxyy,
p6¼pxyxz¼pyxxz¼pxyzx¼pyxzx, p7¼pxxyz, p8¼pyzxx and p9¼pxyzw,
where x, y, z and w denote different nucleotides. For example, pxxxx

includes the site patterns pAAAA; pCCCC; pGGGG and pTTTT, which
have identical probabilities under the model, and pxxxy includes the
site patterns pAAAC; pAAAG; pAAAT; pCCCA, etc. These expressions
provide probabilities for individual sites in a nucleotide sequence
alignment given a species tree under the MSC model. Using the same
notation, the rooted asymmetric four-leaf species tree ða; ðb; ðc; dÞÞÞ
has 11 distinct site-pattern probabilities: p1¼pxxxx, p2¼pxxxy¼pxxyx,
p3¼pxyxx, p4¼pyxxx, p5¼pxyxy¼pyxxy, p6¼pxxyy, p7¼pxyxz¼pxyzx,
p8¼pyxxz¼pyxzx, p9¼pxxyz, p10¼pyzxx and p11¼pxyzw. See Chifman
and Kubatko (2015) for explicit formulas for each site-pattern
probability.

We use pS¼ðpS
1ðs; hÞ; pS

2ðs; hÞ; . . . ; pS
9ðs; hÞÞ to denote the nine

different site-pattern probabilities arising from the symmetric four-
taxon species tree, augmenting the notation above to indicate the
dependence of the site-pattern probabilities on the quantities h and s.
Likewise, pA¼ðpA

1 ðs; hÞ; pA
2 ðs; hÞ; . . . ;pA

11ðs; hÞÞ denotes the 11 distinct
site-pattern probabilities from the asymmetric four-taxon species
tree. In an alignment of length M, the site-pattern frequencies for
these classes can be modeled as a multinomial random variable under
the assumption that the observed sites are independent, conditional
on the species tree:

Z � MultinomialðM; pSÞ; for a symmetric tree;
MultinomialðM; pAÞ; for an asymmetric tree;

�

where Z is the vector of site-pattern counts for the 9 or 11 distinct
classes.

2.3 Maximum a posteriori estimation based on

composite likelihood
We can split a tree of arbitrary size into the subtrees induced by
each quartet of four leaves, and write the likelihood of the observed
site-pattern frequencies for each quartet. For example, in the five-
leaf species tree in Figure 1, we can consider all sets of four tips, to

get
5
4

� �
¼5 different quartets. For any quartet i, each site in an

alignment of length M can be classified into one of ni distinct site
patterns, where ni¼11 if the quartet induces an asymmetric subtree
of the full tree (i 2 f1;2g in this case) or 9 if it induces a symmetric
subtree (i 2 f3; 4; 5g). Our classification of each site into one of the
possible site patterns assumes that the sites are unlinked observa-
tions from the species tree under the MSC model. We refer to data
that satisfy this assumption as Coalescent Independent Sites (CIS)
data. Multilocus data will not satisfy this assumption, as sites
sampled within the same gene are not independent observations
from the species tree. However, we will show that our proposed
methodology performs well for multilocus data as well as for CIS
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data. Some justification for this claim is given in Wascher and
Kubatko (2021).

For each site m, m¼1;2; . . . ;M, and each quartet i, i¼1;2; . . . ; 5,
define V

ðmÞ
i to be the random vector of length ni that contains a 1 in

the jth entry if site pattern j is observed at that site and 0 in all other
entries, and let v

ðmÞ
i 2 f0; 1gni�1 represent the corresponding

observed data. Let vi¼ðvð1Þi ; . . . ; v
ðMÞ
i Þ denote the observed data

across all M sites, and let ðuiÞj be the jth entry of the vector
ui¼

P
m v
ðmÞ
i , which counts the number of times site pattern j is

observed. Letting fiðvijs; hÞ ¼ Prðvijs; hÞ, the likelihood for quartet i
can then be expressed as a function of h and s:

Liðs; h; viÞ ¼ fiðvijs; hÞ ¼
Yni

j¼1

pijðs; hÞðuiÞj ; (1)

where pij is the jth entry in either pS or pA for quartet i, depending
on whether the subtree induced by this quartet is symmetric or
asymmetric, respectively.

Importantly, the subtrees induced by different quartets are not
independent, and computing a true likelihood would require
accounting for the correlation structure among quartets. Therefore,
we instead use composite likelihood—the product of the individual
likelihoods for all possible quartets despite their non-independence.
Note that composite likelihood is also often referred to in the statis-
tical and biological literature as pseudolikelihood or approximate
likelihood [see Varin et al. (2011), for a review of the history of
composite-likelihood methods].

A maximum composite-likelihood estimator (MCLE) based on
(1) would optimize the function

CLðs; h; xÞ ¼ f ðxjs; hÞ :¼
Y
i2Q

fiðvijs; hÞ; (2)

where Q is the set of all possible quartets. The vector
x¼ðxð1Þ; . . . ; xðMÞÞ is defined similarly to the vi, but for the entire
tree; its dimension depends on the number of possible distinct site
patterns on a five-leaf tree. Specifically, each vector xðmÞ records
which of the possible distinct site patterns on a tree of five tips is
observed at site m, while the corresponding v

ðmÞ
i stores the indicators

of the ni site patterns for the ith quartet of this tree at site m.
Instead of using the MCLE, however, we prefer to estimate s and

h via Bayesian maximum a posteriori (MAP) estimation (e.g. Bassett
and Deride, 2019). MAP estimation has two advantages. First, it
allows incorporation of prior knowledge into the estimate as for the
fully Bayesian methods discussed above. Perhaps more importantly,
weighting the likelihood by the priors improves the computational
efficiency and stability of the optimization algorithms by reducing
the flatness of the optimality surface in regions of the parameter
space that have very low likelihood.

With inclusion of the priors, the (unnormalized) posterior dens-
ity function becomes

gðs; hjxÞ ¼ fsðsÞ fhðhÞ f ðxjs; hÞ; (3)

where fs and fh are the prior density functions for the vector of node
ages s and the shared h parameter, respectively. We follow BPP in
using inverse-gamma priors for the root age (¼sR) and h parameters.
The rank-ordered non-root node ages are assigned a uniform
Dirichlet prior, which simply incorporates a constant scaling factor
into the joint prior on s. By maximizing the log posterior density

log gðs; hjxÞ ¼ log fsðsÞ þ log fhðhÞ þ
X
i2Q

log fiðvijs; hÞ; (4)

we obtain our MAP estimator maximum a posteriori estimator
based on composite likelihood (MAPCL):

~x ¼ ð~s; ~hÞ ¼ argmax
s;h

f log gðs; hjxÞg; (5)

with the ‘CL’ subscript signifying that a composite-likelihood term
is used in (2) rather than a true likelihood.

Using results from Miller (2021) and Arnold and Strauss (1991),
we can prove that the MAPCL estimator is statistically consistent
and we argue further that it is also asymptotically normally distrib-
uted (detailed proofs can be found in Supplementary Section S1):ffiffiffiffiffi

M
p
ð~sk � skÞ ! Nð0;Rk;kÞ;

where Rk;k is the cell in the kth row and column of the variance–
covariance matrix

R ¼ J�1ðdÞKðdÞJ�1ðdÞ

and

Kl;q ¼
X
i;i0

Ed

@

@dl
log fiðvijdÞ

� �
@

@dq
log fi0 ðvi0 jdÞ

� �" #

Jl;q ¼ �
X

i

Ed

@2

@dl@dq
log fiðvijdÞ

" #
;

where ~sk is the kth component of the MAPCL estimator ~d, and
fiðvijdÞ is the density function for indicator variable vi conditional
on the parameters d. Furthermore, we can use the observed data to
approximate J and K:

Kl;q ¼
1

M

X
i;i0

XM
m¼1

½ @

@dl
log fiðvi

ðmÞjdÞjd¼~d

� �

@

@dq
log fi0 ðvi0

ðmÞjdÞjd¼~d

� �#

Jl;q ¼ �
1

M

X
i

XM
m¼1

@2

@dl@dq
log fiðvi

ðmÞjdÞjd¼~d

" #
:

Computation of the asymptotic variance above requires inver-
sion of a matrix that becomes large as the number of parameters
increases, which may become problematic. As an alternative, we can
use a bootstrap estimator to measure the variance of the MAPCL es-
timator. In this approach, a bootstrap replicate is obtained by
resampling the columns, i.e. site patterns in the original DNA
sequences, using the following steps:

1. Obtain a bootstrap sample by randomly selecting M columns

(with replacement) from the original sequence alignment, creat-

ing a dataset of the same size as the original data;

2. Repeat Step 1 B times to get a full set of bootstrap samples;

3. For each of the bootstrap samples created in Steps 1 and 2, redo the

analysis to compute the estimates ð~s1; ~h1Þ; . . . ; ð~sB; ~hBÞ, and calcu-

late the sample variance of the estimates, Varð~sBÞ and Varð~hBÞ.

All of the methods described herein are implemented in the
PAUP* program written by DLS (https://paup.phylosolutions.com),
where they are accessed using the qage command (type help

Fig. 1. The five-leaf species tree (a) can be split into the five different four-leaf sub-

trees (b), shown with speciation times marked
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qage; at the command prompt for a description of the available
options). A detailed explanation of the implementation, including
parameterizations, mathematical details for likelihood and gradient
evaluations, optimization strategies and validation, is provided in
the ‘Implementation of qAge in PAUP*’ document contained in the
Supplementary Material.

2.4 Simulation study
We first use simulation to assess the statistical consistency and
asymptotic normality of the MAPCL estimator and to compare the
two methods of measuring uncertainty (calculation of the theoretical
asymptotic variance versus bootstrapping). While many methods for
inferring species-level phylogenies are based on multilocus data, the
theory in the previous section applies specifically to CIS data
(unlinked sites arising from the MSC model). For CIS data, the site
patterns in the sequences constitute independent draws from the dis-
tribution characterized by the MSC and nucleotide substitution
models (Chifman and Kubatko, 2015), conditional on the species
tree, whereas for multilocus data, all sites at a locus are assumed to
have evolved on the same genealogy and are not independent of
other sites at the same locus. However, a straightforward argument,
similar to that of Wascher and Kubatko (2021) for the SVDQuartets
method, can be made that estimates developed for CIS data are also
valid for multilocus data, and we therefore consider both data types
here. Although CIS data are not ordinarily collected in practice, it is
useful to examine the performance of the method when data are
simulated directly from its underlying model.

To examine the properties of the MAPCL estimator, we thus
simulated two types of data: (i) unlinked-CIS data (each site evolves
on its own tree drawn randomly from the distribution of gene trees
expected for the true simulation parameters under the MSC model)
and (ii) multilocus data (a sequence of length l is simulated for each
locus on an underlying gene tree drawn randomly from the expected
gene tree distribution). The simulations were performed as follows:

1. Generate gene tree samples under the MSC model based on a

specified input species tree;

2. Generate DNA sequences of length l for each gene tree under the

JC69 model (l¼1 for CIS data);

3. Choose prior distributions for the parameters;

4. Compute the site-pattern frequencies for all possible quartets

and maximize the log posterior density to obtain node-age esti-

mates using the MAPCL estimator and estimate their theoretical

asymptotic variances;

5. Resample the simulated sequences to get B bootstrap replicates,

and compute the sample variance of the estimates via bootstrap-

ping, as described in the previous section (for the multilocus

datasets, a two-level bootstrap is conducted where we first take

a bootstrap sample of genes followed by independent bootstrap

resampling of sites within each gene);

6. Repeat Steps 1–4 D times to obtain node-age estimates and esti-

mate variances using both theoretical asymptotic calculations

and bootstrapping.

All steps in the simulations were performed using the simulation
module and qage command in PAUP*. In Step 1, two different
model species trees were defined: a five-leaf tree and a six-leaf tree
(Fig. 2). Population-size and mutation-rate parameters were set

so that h ¼ 0:002 (constant throughout the tree). Speciation
times were assigned (in mutation units) as ðs1; s2; s3; s4Þ ¼
b � ð0:0005; 0:0005;0:001; 0:0015Þ for the five-tip model tree and
ðs1; s2; s3; s4; s5Þ ¼ b � ð0:0005;0:0005; 0:001; 0:0015;0:002Þ for the
six-tip model tree. Setting b 6¼ 1 stretches or shrinks the tree while still
satisfying the molecular clock assumption; we used b ¼ 1;2; and 4
for our simulations. In Step 2, the gene length l was set to 1 for CIS
data (i.e. we simulated 100 000 genealogies with one DNA site for
each). For multilocus data, we simulated 10 000 genes, each of length
l¼100. We note that this simulation condition results in relatively
large datasets, which are useful for comparing the performance of our
method to the theoretical predictions derived above. In Step 3, we
assigned diffuse inverse-gamma priors, parameterized as (mean, coeffi-
cient of variation): IGðl¼0:003; cv¼1:0Þ for h (which is slightly mis-
specified from the true value of 0.002) and IGðl¼h; cv¼1:0Þ for the
age of the root in coalescent units, where h is the tree height, defined
as the maximum number of branches connecting the tips and the root.
In Steps 5 and 6, we chose B¼100 and D¼100, respectively.

The MAPCL estimator is also applicable when multiple lineages
are sampled for each tip species (see Supplementary Material:
‘Implementation’). To evaluate the performance of this option,
PAUP* was instructed to generate gene tree samples using the same
five-leaf model species tree and parameter settings as above, but
with two lineages for both species D and species E. We then used
PAUP* to simulate and analyze the multilocus data to estimate
parameter values and their variances.

We carried out an additional simulation to compare the perform-
ance of the MAPCL estimator in qAge with BPP, again using the
simulation module in PAUP* (which provides an interface to invoke
BPP from a Nexus file). We simulated multilocus data with 2000
genes each of length 100, for trees with K tips ðK ¼ 7;8; . . . ; 15; 20Þ,
with h set to 0.002. The trees used for simulation are included in
Supplementary Figures S16 and S17.

We ran BPP and qAge analyses with inverse-gamma priors
IGðl; cvÞ for h and the age of the root node R (sR). Specifically, we
used cv ¼ 1:0 for a diffuse prior and adjusted l such that the prior
mean was equal to 5h, h or h=5 for the h parameter, and 5 h, h, or
h=5 for the root age sR, whereas above the tree height h is defined in
coalescent units as the maximum number of branches connecting
the tips and the root. This can then be scaled to mutation units and
converted to the shape-rate parameterization to provide the prior
for BPP. For example, in Figure 2, the height of the tree in
coalescent units is three in (a), and four in (b). The details of prior-
distribution combinations can be found in Figure 6. We then investi-
gated the impact of the 3�3 combinations of the priors on the
performance of BPP and MAPCL. To make the comparison in a
computationally feasible way, for smaller trees (K¼7, 8, 9, 10), we
discarded the first 1000 samples as burnin, and sampled every 50th
observation. For larger trees with more than 10 tips, we ran the BPP
analysis 1000 times longer than qAge, and discarded the first 10%
of the samples as burnin. A total of 500 observations were sampled
equally frequently and used to compute estimates in all cases.

The detailed MCMC configurations and running time can be
found in Supplementary Table S1 and Supplementary Section S3. In
all of the analyses, BPP estimates a different h parameter for each
branch, whereas the current qAge implementation assumes and esti-
mates a single h that applies to the entire tree. After performing anal-
yses with BPP and qAge for 100 replicates, we quantified the
deviation of estimated node ages in mutation units from the true val-
ues of the simulation model using the root-mean-square error
(RMSE) and mean absolute error (MAE). We calculated the propor-
tion of 95% confidence/credible intervals that included the true par-
ameter value. Finally, for BPP analyses, we summarized the
percentage of ESS values >200.

2.5 Application to gibbon data
We explored the performance of our MAPCL estimator in inferring
speciation times for empirical data by applying it to a genome-scale
dataset previously analyzed by Shi and Yang (2018) for five species of
gibbons: Hylobates moloch (Hm), Hylobates pileatus (Hp),
Nomascus leucogenys (N), Hoolock leuconedys (B) and

Fig. 2. Two different model species trees with speciation times used as parameters

for the simulation process: (a) five-species tree. (b) six-species tree
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Symphalangus syndactylus (S) (Carbone et al., 2014; Veeramah et al.,
2015). The dataset consists of 11 323 coding loci, each of length
200 bp. Except for the outgroup (O), multiple lineages are included
for each species: two for Hm and Hp, and four for N, B and S. Here,
we reanalyze these data with qAge (for MAPCL) and BPP.

For both analyses, we fixed the species tree to be that shown in
Figure 3. In this example, both programs estimate five node-age
parameters, but BPP estimates 10 h parameters while qAge estimates
a single h value. As recommended by the BPP authors (Flouri et al.,
2018), we use inverse-gamma prior distributions with the a parameter
set to three for both h and for the root age, sR. We then chose the
value of b to match the mean of the distribution used by Shi and Yang
(2018), although they assumed gamma rather than inverse-gamma
prior distributions in an earlier version of BPP. To study sensitivity to
the prior, we also conducted analyses with prior means that were five
times larger and five times smaller than these values, and looked at all
combinations of these prior settings for each parameter, leading to a
total of nine prior combinations, which we label Settings 1–9 in
Supplementary Table S2 of Section S4 (see also Fig. 8). Setting 5 corre-
sponds most closely to the priors used in Shi and Yang (2018): h �
IGð0:001;1:0Þ and sR � IGð0:01; 1:0Þ. For each choice of prior dis-
tribution, we repeated the analysis twice, with each replicate run for 2
weeks, and we sampled every 100th observation. All prior settings
reached at least 10 000 samples during this time (which corresponds
to 10 000�100¼1 million iterations of the algorithm), except for
Replicate 1 in Setting 9, for which 9205 samples were obtained. After
discarding the first 2000 samples as burnin, Samples 2000–10 000
from both replicates were combined to compute estimates (for Setting
9, Replicate 1 and Samples 2000–9205 were used).

For MAPCL, we enumerated all possible quartets by selecting one
lineage per tip species, resulting in 752 quartet likelihoods used to
calculate the composite likelihood. Using the same priors as for
BPP, we estimated the internal branch lengths tBS, tNBS and tHpHm

(see Fig. 3), and the single h parameter; variances were estimated
using the bootstrap. Note that although we used the difference be-
tween speciation times in this case (i.e. branch lengths rather than
node ages), statistical consistency and asymptotic normality can still
be shown to hold.

As discussed above, an important assumption for MAPCL estima-
tion is that the mutation-scaled population size h is constant
throughout the tree. Since this assumption is likely to be violated in
practice, we used simulation to check the impact of variable hs on
estimation accuracy. To make our simulation realistic, we used the
species tree with node ages set to those inferred by BPP for the gib-
bon data of Shi and Yang (2018) (which matches the topology of
Fig. 2b) and simulated 11 323 loci with 200 bp for each. We con-
ducted simulations as follows:

1. Sample 11 values of the h parameter from an exponential distri-

bution with mean 0.0053; these serve as the ‘true’ hs for the 11

ancestral and extant populations for the gibbon phylogeny of

Shi and Yang (2018);

2. Generate 100 replicates of DNA sequences with 11 323 loci,

200 bp for each under the species tree in Figure 2b. Compute

100 MAPCL estimates and compute the mean square errors and

absolute errors for the five node ages.

3. Repeat Steps 1–2 100 times and compute normalized RMSEs

(RMSE/truth�100%) and RMSEs for 100 combinations of h val-

ues. We normalize RMSEs to the true parameter values to get a bet-

ter idea of the amount of error since some branches are very short.

3 Results

3.1 Simulation study
To assess the statistical properties of the MAPCL estimator, we plot-
ted histograms of the 100 MAPCL estimates for node ages in the
three five-taxon and the three six-taxon model trees (Supplementary
Section S2 contains figures for all of the simulation settings). As a
representative example, Figure 4 shows histograms of the 100
MAPCL estimates of node age s1 for the three five-leaf model trees
under our simulation conditions. From these plots, we see that the
estimates are approximately normal and distributed around the true
value, thus supporting our theoretical finding of statistical consist-
ency. Moreover, when we include multiple lineages per tip or ana-
lyze multilocus data in the same way, consistency and asymptotic
normality still appear to hold. When we increase the number of
sites, we see these results even more clearly (see Supplementary
Section S2).

To assess the performance of our method in estimating the un-
certainty of the MAPCL estimator, Figure 5 shows plots of the 100
variance estimates of the MAPCL estimates of node age s1 for the
three five-leaf model trees under our simulation conditions. In the
unlinked-CIS, single-lineage-per-tip setting, it is immediately clear
that in all cases both the bootstrap and asymptotic variance esti-
mates perform similarly and the values are scattered evenly around
the sample variance. This approximation can be improved as the
number of sites increases (Supplementary Section S2.1). These
results show both the bootstrap and asymptotic variance estimators
are theoretically valid and provide unbiased uncertainty measure-
ments. The bootstrap variance estimator slightly overestimates the
uncertainty for multilocus data, while the asymptotic variance esti-
mator shows better performance and less bias for this data type. We
also see this tendency toward overestimation in cases under multiple
lineages per tip in the five-taxon and six-taxon model trees (see
Supplementary Section S2).

We now compare our method with BPP and examine the estima-
tion accuracy of both methods. Figure 6 summarizes the RMSE of
the node-age estimates on trees with different sizes. We find that
MAPCL estimates speciation times with smaller error than BPP and
is quite robust to different prior combinations. The estimation error
from BPP may be partly due to convergence difficulties for some
runs, which can be seen from the ESS values (see Supplementary Fig.
S18). (BPP convergence was better when the prior for h was chosen
to have a large mean). Also, when the data are simulated with a con-
stant h parameter, the fact that BPP is estimating a different h par-
ameter for each branch gives an advantage to MAPCL, which
assumes and estimates a single h for the whole tree. Overall, we con-
clude that after running BPP 1000 times longer than qAge, our esti-
mates are comparable or more accurate than those from BPP over a
wide range of conditions. The results of MAE are similar to those
for RMSE (Supplementary Fig. S19).

Additionally, Figure 7 shows the proportion of 95% confidence/
credible intervals that include the true parameter value in 100 simu-
lation replicates. Again we note that the performance of BPP
depends on the choice of prior for h, especially when we compare
the coverage probabilities for large trees (which generally did not
shown indications of lack of convergence in terms of ESS values)
from Figure 7(a–c). On the other hand, the confidence intervals
from MAPCL include the true parameter values nearly 95% of the
time, which highlights our finding that the bootstrapping produces
an consistent estimator of the uncertainty when the number of genes
is large enough (Supplementary Figs S7–S15 and Supplementary
Section S2).

Fig. 3. The species tree for the five gibbon species and the outgroup (O¼human)

with branch-length parameters labeled by Ti : i ¼ labels for all species descending

from the lower node incident to the branch
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3.2 Application to gibbon data
Results (in coalescent units) from BPP and MAPCL for the choice of
prior distributions corresponding most closely to those used by Shi
and Yang (2018) are shown in Table 1. We use coalescent units here
because they allow a more direct comparison of methods when
population sizes and/or mutation rates are allowed to vary across
the tree. In addition, Shi and Yang (2018, p. 167) reported that

internal branch lengths were more accurately estimated with coales-
cent units when h was allowed to vary across branches, presumably
due to these parameters being poorly estimated in short branches
due to the influence of the prior. We have included a comparison of
node ages in mutation units in Supplementary Table S3 for com-
pleteness. In Table 1, we see that for tNBS and tBS, the estimates from
MAPCL and BPP are similar, with wider confidence intervals for
MAPCL that cover the intervals given by BPP, as in the simulation
studies. For tHmHp, however, the intervals given by MAPCL and BPP
do not overlap (though the values estimated are similar) and both
are similar in width.

To examine the sensitivity of these estimators to the prior distri-
bution, we evaluated both estimators under nine different prior set-
tings (Fig. 8). Estimates obtained using MAPCL are robust to the
choice of prior distribution, with little variation across the range of
values selected. Conversely, BPP is sometimes strongly affected by
the choice of priors, most notably for estimation of tNBS for Settings
2 and 3. To examine this more carefully, we made trace plots of all
parameters for all replicates and prior choices (see Supplementary
Section S4). These trace plots show some cases in which the two rep-
licates within a prior setting sampled different values for the entire
run (see e.g. the results for hB in Supplementary Fig. S36, Setting 4,
or for hONBSHmHp in Supplementary Fig. S59, noting the difference
in the y-axis values for Setting 2). It is also clear that for some set-
tings, BPP experienced some difficulty converging, making clear
that long runs may be required, even for the relatively straightfor-
ward problem of inferring node ages on a fixed six-taxon species
tree with a large dataset. In contrast, qAge quickly produces stable
MAPCL estimates that are robust to the choice of prior distribu-
tion—it took only 17 s to produce an estimate and confidence inter-
val for this dataset on a current-generation laptop computer.

Figure 9 shows the error distribution resulting from our simula-
tions to check the robustness of the MAPCL estimator to variable h
parameters. It is evident from both plots that estimation accuracy
does not change significantly when data are generated using differ-
ent combinations of hs. In the worst case, the estimates for the small-
est speciation time between species S and B deviate from the truth
by 15% on average. As this branch is quite short (0.000885), the
RMSE of 0.00014 indicates that the MAPCL estimator performs
well even for this case.

4 Discussion

4.1 Is our method Bayesian or frequentist?
An earlier version of our method used a simpler composite-likelihood
estimator, maximizing log CLðs; h; xÞ in (2) rather than incorporating
prior terms as in (4). We switched to MAP estimation as a means of
dealing with problems arising due to flatness of the likelihood surface
in regions of parameter space that have low likelihood. Vague prior
terms are especially helpful when analyzing smaller datasets, where
sampling error and/or model misspecification can lead to unstable
parameter estimates and make optimization more difficult.

A reviewer suggested that the change from a ‘frequentist’ to a
‘Bayesian’ perspective constituted a fundamental change in method-
ology requiring additional theoretical validation. Although we have

Fig. 4. Histograms of 100 MAPCL estimates for node age s1 (in mutation units)

using 100 000 unlinked-CIS from the five-leaf model trees with a single lineage per

tip. The vertical line in each histogram is the sample mean of the 100 MAPCL esti-

mates. (a) s1 ¼ 0:0005; (b) s1 ¼ 0:001; (c) s1 ¼ 0:002

Fig. 5. Plots of 100 standard deviation estimates in coalescent units for node age s1 using 100 000 unlinked-CIS from the five-leaf model trees with a single lineage per tip.

Points denoted by � are obtained by bootstrapping. The x-axis is an index for the simulated samples. The horizontal line in the middle of each plot is the sample standard devi-

ation of the 100 MAPCL estimates

Speciation time estimation 5187

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/23/5182/6760259 by M
BLW

H
O

I Library user on 27 M
ay 2023

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac679#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac679#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac679#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac679#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac679#supplementary-data


addressed technical aspects of this change in the Supplementary
Material, the distinction between these perspectives is not as stark as
it might seem. The technique of regularization—intentionally
increasing the bias of an estimator in order to decrease the overall

estimation error—is commonly used by frequentists. For example,
‘penalty’ or ‘shrinkage’ terms are added to the loss function in the
lasso and ridge regression methods (Tibshirani, 1996), but these
methods can be equivalently treated as Bayesian MAP estimates

Fig. 7. Plots of the percentage of 95% confidence/credible intervals that include the true parameter value. The x-axis gives the tree size (number of tips). Points with different

line types give values obtained using the nine prior combinations for h and sR (see Fig. 6). The shaded area gives the expected acceptance region of the coverage proportions in

100 simulation replicates. All summaries were computed using mutation units

Fig. 6. Plots of the RMSE of the node-age estimates (in mutation units) for trees with varying numbers of tips. The x-axis shows the number of tips in the tree. Analysis based

on two methods (circles—BPP, triangles—MAPCL) is conducted with different priors. In each plot, the ‘large’ prior for the root age, sR � IG(5h, 1.0), is shown in solid line;

the ‘small’ prior, sR � IG(h/5,1.0), is shown in dotted line; and the prior centered at the true value, sR � IG(h, 1.0), is shown in dashed line (h is the tree height). Panels show

the results of analyses using priors centered on different values of h, with the middle panel centered on the true h used for simulation

Fig. 8. The 95% credible (BPP; upper gray line) and confidence (MAPCL; lower black line) intervals for the gibbon data for the nine prior choices considered here (left panel).

Setting 5 [h � IGð0:001; 1:0Þ and sR � IGð0:01; 1:0Þ] is the closest match to the priors used by Shi and Yang (2018)
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where a specific prior distribution corresponds to the regularization
term (e.g. Tibshirani, 1996, Section 5). Because we use confidence
intervals rather than Bayesian credible intervals to assess the uncer-
tainty of our estimates, we accept that our method is well character-
ized as a frequentist penalized likelihood method. However, because
of the Bayesian motivation for our penalty term, it is also formally a
Bayesian method as well, while differing from more typical fully
Bayesian methods in (i) using a composite posterior density rather
than a posterior density that incorporates the true likelihood and (ii)
obtaining point estimates from a mode, rather than the mean, of the
posterior distribution. Consequently, the choice between classifying it
as frequentist or a Bayesian method is largely a matter of personal
taste; the result is the same regardless of which perspective is adopted.
Of course, a standard composite-likelihood method is obtained if uni-
form priors are used for sR and h, and although not recommended,
this option is available in PAUP*.

4.2 Computational efficiency of the MAPCL estimator
To obtain good MAPCL estimates of the node ages on a species tree,
we need to be able to do two things well: compute the composite

likelihood, and search the parameter space for values that optimize
the posterior probability density. The former can be done very effi-
ciently for trees of arbitrary size. The number of individual likelihoods
for all possible quartets (2) grows as the fourth power of the tree size,
but the amount of work required per quartet is light, so that the total
likelihood can be computed quickly even for a large tree.

Despite running far more quickly than fully Bayesian methods
including BPP and StarBEAST2, the second task becomes more diffi-
cult as the dimension of the parameter space increases. Fortunately,
the gradient (first partial derivatives of the posterior density function
with respect to each parameter) can be calculated quickly for any
point in the parameter space, allowing the use of quasi-Newton opti-
mizers that typically need fewer function evaluations to converge to
an optimum than derivative-free methods. In addition, the bootstrap-
ping procedure used for measuring uncertainty could easily be paral-
lelized, although we have not yet done so.

4.3 Assumptions and performance of the MAPCL

estimator
The assumptions that (i) nucleotide sites evolve according to the JC69
substitution model, and (ii) effective population sizes are constant
throughout the tree, permit the use of formulas in Chifman and
Kubatko (2015) for computing the site-pattern probabilities used in
Equation (1). Without these closed-form expressions, exact calculation
of site-pattern probabilities would involve an intractable multidimen-
sional integration over gene trees and their associated branch lengths.
Empirical data, however, may evolve under a nucleotide substitution
model more complex than JC69, and preliminary simulations indicate
that our method is not always robust when the nucleotide substitution
model is misspecified and divergence between species is high (results
not shown). However, for closely related species like gibbons, Shi and
Yang (2018) argue that the JC69 model should be adequate for BPP
and ASTRAL, and we note that BPP currently also assumes the JC69
model. Our simulations do indicate that our method is robust to the
violation of the assumption of constant effective population sizes
across all populations, although preliminary simulations indicate that
in some cases, the combined impact of a misspecified substitution
model and constant h parameter can be substantial.

We are investigating plausible approaches for extending our
method to allow inference under more general models, such as the
GTR model and its submodels. An obvious, but computationally ex-
pensive, strategy would be to estimate site-pattern probabilities by
Monte Carlo simulation of a large number of independent sites under
the assumed model for each point in parameter space visited by the
optimizer. We are exploring an alternative method that makes a deter-
ministic estimate of the desired vector of site-pattern probabilities
using the expected lengths of the branches on each possible gene tree,
conditional on a species-tree topology and the current set of h and s

values. The latest versions of PAUP* support this method (to be
described in a subsequent paper), allowing the choice between using
exact site-pattern probabilities under the JC model, or an approxima-
tion of these probabilities under more complex models.

In summary, our MAPCL estimator of speciation times has sev-
eral qualities that set it apart from existing methods. It is fast enough
to be used for datasets that are too large for existing fully Bayesian
methods. It does not appear to be overly sensitive to the location of
weakly informative inverse-gamma priors (BPP can exhibit slow
convergence when the locations of prior and posterior distributions
are very different). Even if the ultimate goal is to conduct BPP or
StarBEAST2 analyses, our method may be useful in parameterizing
prior distributions in an empirical Bayes setting, or in choosing start-
ing values for MCMC iterations in a fully Bayesian analysis. Unlike
other fast methods, including ASTRAL and MP-EST, it does not re-
quire prior estimation of gene trees. It is both statistically consistent
and asymptotically normal, ensuring good statistical properties as
the amount of data increases. It can handle both CIS and multilocus
data and can accommodate the sampling of multiple individuals per
species. We anticipate that it will be a useful addition to the collec-
tion of methods available for inferring speciation times from
genome-scale data under the MSC model.

Table 1. Means and 95% credible (BPP) or confidence (MAPCL)

intervals in coalescent units for three internal branch lengths of

interest for the gibbon dataset

Parameter BPP MAPCL

Mean 95% HPD interval Mean 95% CI

tNBS 0.075 (0.052, 0.096) 0.097 0.065–0.119

tBS 0.052 (0.039, 0.069) 0.051 0.023–0.076

tHmHp 2.054 (1.972, 2.140) 1.898 1.840–1.945

Note: Using the prior distributions matching those used by Shi and Yang

(2018) most closely: h � IGð0:001; 1:0Þ and sR � IGð0:01; 1:0Þ (our Setting

5). For BPP, the conversion to coalescent units was carried out as in Shi and

Yang (2018) (their Table 5); i.e. we used 2Ds=h, where s is the relevant node

age in mutation units and h is the value estimated by BPP for that branch.

The 95% confidence intervals were determined using the bootstrap.

Fig. 9. Boxplots of RMSEs for node-age estimates (in mutation units) for the gibbon

tree with varying hs. Each box in the plot represents the distribution of (a) RMSEs

or (b) normalized RMSEs for 100 combinations of h values. Node ages (ss) corres-

pond to Figure 2b
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