See also 20 \& 27 June 2018 at http://phyloseminar.org/recorded.html

Bayesian Phylogenetics

Workshop on Molecular Evolution
Woods Hole, Massachusetts
29 May 2023

Paul O. Lewis

Department of Ecology \& Evolutionary Biology

UNIVERSITY OF CONNECTICUT

Bayesian inference

Joint probabilities

10 marbles in a bag Sampling with replacement
$\operatorname{Pr}(B, S)=0.4$
$\operatorname{Pr}(W, S)=0.1$
(-) $\operatorname{Pr}(\mathrm{B}, \mathrm{D})=0.2$
(e) $\operatorname{Pr}(\mathrm{W}, \mathrm{D})=0.3$

Conditional probabilities

What's the probability that a marble is black given that it is dotted?

$$
\begin{aligned}
& 5 \text { marbles satisfy the } \\
& \text { condition (D) } \\
& \text { D) }=\frac{2}{5} \longleftrightarrow
\end{aligned}
$$

2 remaining marbles are black (B)

Marginal probabilities

Marginalization

B W

Marginalizing over colors

Joint probabilities

B W

[^0]
Marginalizing over "dottedness"
 B
 W

\section*{D | | | | |
| :--- | :--- | :--- | :--- |
| | | | |
 $\begin{array}{l:l} & \operatorname{Pr}(\mathrm{D}, \mathrm{B}) \\ \operatorname{Pr}(\mathrm{D}, \mathrm{W}) \\ & \operatorname{Pr}(\mathrm{S}, \mathrm{W})\end{array}$}

Marginal probability of being a white marble

Bayes' rule

The joint probability $\operatorname{Pr}(B, D)$ can be written as the product of a conditional probability and the probability of that condition

Bayes' rule

Equate the two ways of writing $\operatorname{Pr}(\mathrm{B}, \mathrm{D})$

$$
\operatorname{Pr}(\mathrm{B} \mid \mathrm{D}) \operatorname{Pr}(\mathrm{D})=\operatorname{Pr}(\mathrm{D} \mid \mathrm{B}) \operatorname{Pr}(\mathrm{B})
$$

Divide both sides by $\operatorname{Pr}(\mathrm{D})$ $\frac{\operatorname{Pr}(\mathrm{B} \mid \mathrm{D}) \operatorname{Pr}(\mathrm{B})}{\operatorname{Pr}(\mathrm{D})}=\frac{\operatorname{Pr}(\mathrm{D} \mid \mathrm{B}) \operatorname{Pr}(\mathrm{B})}{\operatorname{Pr}(\mathrm{D})}$

Bayes' rule
$\operatorname{Pr}(\mathrm{B} \mid \mathrm{D})=\frac{\operatorname{Pr}(\mathrm{D} \mid \mathrm{B}) \operatorname{Pr}(\mathrm{B})}{\operatorname{Pr}(\mathrm{D})}$

Bayes' rule

Bayes' rule (variations)

$$
\begin{aligned}
\operatorname{Pr}(B \mid D) & =\frac{\operatorname{Pr}(D \mid B) \operatorname{Pr}(B)}{\operatorname{Pr}(D)} \\
& =\frac{\operatorname{Pr}(D \mid B) \operatorname{Pr}(B)}{\operatorname{Pr}(B, D)+\operatorname{Pr}(W, D)}
\end{aligned}
$$

$\operatorname{Pr}(D)$ is the marginal probability of being dotted To compute it, we marginalize over color

Bayes' rule (variations)

$$
\begin{aligned}
& \operatorname{Pr}(B \mid D)=\frac{\operatorname{Pr}(D \mid B) \operatorname{Pr}(B)}{\operatorname{Pr}(B, D)+\operatorname{Pr}(W, D)} \\
& \quad=\frac{\operatorname{Pr}(D \mid B) \operatorname{Pr}(B)}{\operatorname{Pr}(D \mid B) \operatorname{Pr}(B)+\operatorname{Pr}(D \mid W) \operatorname{Pr}(W)} \\
& \quad=\frac{\operatorname{Pr}(D \mid B) \operatorname{Pr}(B)}{\sum_{\theta \in\{B, W\}} \operatorname{Pr}(D \mid \theta) \operatorname{Pr}(\theta)}
\end{aligned}
$$

Bayes' rule in statistics

Likelihood of hypothesis θ
Prior probability of hypothesis θ

$$
\operatorname{Pr}(\theta \mid D)=\frac{\operatorname{Pr}(D \mid \theta) \operatorname{Pr}(\theta)}{\sum_{\theta} \operatorname{Pr}(D \mid \theta) \operatorname{Pr}(\theta)}
$$

Posterior probability of hypothesis θ

Marginal probability of the data (marginalizing over hypotheses)

Paternity example

$$
\operatorname{Pr}(\theta \mid D)=\frac{\operatorname{Pr}(D \mid \theta) \operatorname{Pr}(\theta)}{\sum_{\theta} \operatorname{Pr}(D \mid \theta) \operatorname{Pr}(\theta)} \quad \theta_{1}
$$

aa (mother)

Aa (child)
θ_{2}

Row sum

Genotypes
Prior
Likelihood

Prior X
Likelihood
Posterior

AA
1/2
1

1/2
1/4
3/4
$1 / 3$

Bayes' rule: continuous case

Likelihood Prior probability density

$$
p(\theta \mid D)=\frac{\downarrow(D \mid \theta) p(\theta)}{\int p(D \mid \theta) p(\theta) d \theta}
$$

Posterior probability density

Marginal probability of the data

If you had to guess...

Not knowing anything about my archery abilities, draw a curve representing your view of the chances of my arrow landing a distance d centimeters from the center of the target.

Case 2: assume I have a talent for missing the target!

[^1]
Case 3: assume I have no talent

This is a vague prior: its high variance reflects nearly total ignorance of my abilities, saying that my arrows could land nearly anywhere!

A matter of scale

Notice that I haven't provided a scale for the vertical axis.

What exactly does the height of this curve mean?

For example, does the height of the dotted line represent the probability that my arrow lands 60 cm from the center of the target?

Probabilities are associated with intervals

Probabilities are attached to intervals (i.e. ranges of values), not individual values

The probability of any given point (e.g. $d=60.0$) is zero!

However, we can ask about the probability that d falls in a particular interval e.g. $50.0<d<65.0$
0.0
20.0
40.0
60.0

Densities of various substances

Substance	Density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$
Cork	0.24
Aluminum	2.7
Gold	19.3

Density does not equal mass mass $=$ density \times volume

Integrating a density yields a probability

Integrating a density yields a probability

Archery priors revisited

[^2]
Usually there are many parameters...

A 2-parameter example

Posterior
probability density
$p(\theta, \phi \mid D)=\frac{\stackrel{\rightharpoonup}{p(D \mid \theta, \phi)} \overline{p(\theta) p(\phi)}}{\int_{\theta} \int_{\phi} p(D \mid \theta, \phi) p(\theta) p(\phi) d \phi d \theta}$
Marginal probability of data
Likelihood Prior density

An analysis of 100 sequences under the simplest model (JC69) requires 197 branch length parameters. The denominator would require a $\mathbf{1 9 7}$-fold integral inside a sum over all possible tree topologies!
It would thus be nice to avoid having to calculate the marginal probability of the data...

Markov chain Monte Carlo (MCMC)

Markov chain Monte Carlo (MCMC)

For more complex problems, we might settle for a good approximation
to the posterior distribution

MCMC robot's rules

Uphill steps are always accepted

Actual rules (Metropolis algorithm)

Uphill steps are always accepted because $\mathrm{R}=\mathrm{I}$

Metropolis et al. 1953. Equation of state calculations by fast computing machines.J. Chem. Physics 2 I (6):1087-1092.

Cancellation of marginal likelihood

When calculating the ratio (R) of posterior densities, the marginal probability of the data cancels.

$$
\frac{p\left(\theta^{*} \mid D\right)}{p(\theta \mid D)}=\frac{\frac{p\left(D \mid \theta^{*}\right) p\left(\theta^{*}\right)}{p(D)}}{\frac{p(D \mid \theta) p(\theta)}{p(D)}}=\frac{p\left(D \mid \theta^{*}\right) p\left(\theta^{*}\right)}{p(D \mid \theta) p(\theta)}
$$

Posterior ratio

Apply Bayes' rule to both top and bottom

Likelihood ratio

Prior ratio

Target vs. Proposal Distributions

Target vs. Proposal Distributions

Target vs. Proposal Distributions

"overly bold" proposal distribution

MCRobot (or "MCMC Robot")

Javascript version used today will run in most web browsers and is available here:
https://plewis.github.io/applets/mcmc-robot/

Metropolis-coupled Markov chain Monte Carlo (MCMCMC)

Sometimes the robot needs some help,

MCMCMC introduces helpers in the form of "heated chain" robots that can act as scouts.

Geyer, C.J. 199I. Markov chain Monte Carlo maximum likelihood for dependent data. Pages I56-163 in Computing Science and Statistics (E. Keramidas, ed.).

Heated chains act as scouts for the cold

 chain
Cold chain robot can easily make this jump because it is uphill

Hot chain robot can also make this jump with high probability because it is only slightly downhill

The Hastings ratio

Hastings, W. K. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97-109.

The Hastings ratio

Example in which proposals were biased toward due east, but Hastings ratio was not used to modify acceptance probabilities

The Hastings ratio

Hastings, W. K. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97-109.

Hastings Ratio

$$
R=\min \left\{1,\left[\frac{p\left(D \mid \theta^{*}\right) p\left(\theta^{*}\right)}{p(D \mid \theta) p(\theta)}\right]\left[\frac{q\left(\theta \mid \theta^{*}\right)}{q\left(\theta^{*} \mid \theta\right)}\right]\right\}
$$

Note that the Hastings ratio is 1.0 if $q\left(\theta^{*} \mid \theta\right)=q\left(\theta \mid \theta^{*}\right)$

[^0]: MOLE 2023 Paul O. Lewis

[^1]: MOLE 2023 Paul O. Lewis

[^2]: MOLE 2023 Paul O. Lewis

