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The quantity of available sequence data for inferring evolutionary
relationships is increasing rapidly

http://genome.wellcome.ac.uk/



“With the advent of modern molecular biology, the
ability to collect biological sequence data has

out-paced the ability to adequately analyze these
data”

– Jeff Thorne (Evolutionary biologist)

Thorne et al., Journal of Molecular Evolution. 1991
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There are a lot of choices to make!



Biological questions
What do you want to know?
What do you already know?

Technical questions
What data is right for our questions?
Is a closely related reference genome available?
How should we process and analyze our data?
What biases may be affecting our inferences?
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General approach
- Decide what to sequence ( to )
- Consensus sequence, alignment, locus selection

( to )
- Evolutionary analyses ( to )
- Success!



What to sequence?

to



Different sequencing approaches enrich the samples for different
components of the genome

Enrichment (smallest to largest proportion of genome)
* Directed PCR
* Targeted enrichment, Rad-tag etc
* Transcriptome
* Whole genome

Depending on your questions, any of these could be the best option!



Survey question! PollEv.com/emilyjanemctavish820



Directed PCR
Simple and cheap for a small number of genes
Doesn’t scale so well to many genes
Doesn’t sound fancy



Targeted enrichment (e.g. Ultra-conserved
elements, probes for orthologous single copy genes,
etc.)

Use hybridization to enrich particular regions
Works well even on degraded DNA
Need to synthesize probes specific to each region
- need data to get data!
Data sets can be combined across projects if
same probe set applied



Non-targeted enrichment (RAD-tag, ddRAD
etc.)

Select randomly distributed, but consistent,
genome regions
Comparable across closely related taxa, but not
more distant taxa
Each locus has very few variable sites (not good
for generating gene trees)



Whole transcriptome
Enriched for expressed protein coding genes
Content will vary based on cell type,
environment, etc.
Provides expression level data



Whole genome sequencing
Capture all the data
In a phylogenetic context, often only cost
effective for small genomes
Annotation is hard! Often need transcriptome to
get genes
Mapping or assembly can be slow,



Need to put the pieces back together (usually)!

to



Genomic sequencing

You have all the data!
You have to deal with all of the data.



De novo assembly

(Baker, 2012)



Mapping to a reference genome



To make evolutionary statements, you need to align genomic
regions across taxa.
Depending on evolutionary history this can be easy or hard!

(Darling et al., 2008)
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An alignment is a statement of shared ancestry



Gene tree (Locus tree)
The ancestry of a homologous region of the genome
that has a single evolutionary history (no
recombination)

Enrichment methods focus our sequencing efforts on
these regions



Free textbook: Phylogenetics in the Genomic Era
https://inria.hal.science/PGE/page/table-of-contents

Simion et al. (2020)

https://inria.hal.science/PGE/page/table-of-contents


Gene duplication and loss

Orthology Paralogy

Inference of homology is not incorrect! But our current models are
limited. If you treat paralogs as orthologs, you can make incorrect
inferences. figure from Casey Dunn



“investigation of genes with extreme support for turtle placement
revealed unappreciated paralogy in a small proportion of alignments
(<1%) that had an extraordinary influence on the inferred
placement of turtles.”
(Brown and Thomson, 2016) (Chiari et al., 2012)



Challenge: The true (unknown) phylogenetic
history is needed to assess orthology vs paralogy



Integrated approaches to Duplication, Transfer, and Loss (DTL)
can jointly estimate gene trees and species trees, but are very
computationally expensive.

Phyldog; (Boussau et al., 2013)



“For most subsets of the data and inference methods, using all
clusters (i.e. paralogs and orthologs) also results in consistent
inferences of species tree topologies. Our results highlight the
benefits of using data from all gene families by showing that the
amount of data used can be increased by an order of magnitude”
(but there is sensitivity to inference method)

Smith et al. (2022); Smith and Hahn (2021)



New this month: ROADIES - “Reference-free, Orthology-free,
Annotation-free, Discordance-aware Estimation of Species Trees,”
Gupta et al. (2025)



Analyzing genome scale data sets can be SLOW.

Are the tradeoffs of faster methods worth it?



Log-likelihood score differences between inferred trees and
“best-observed” trees plotted against topological distances (Zhou et al.,
2017).



ML tree inference software:
For VERY large datasets (1000+sequences):

- RAxML/EXaML (Kozlov et al., 2015) is very efficient,
especially with multiple runs

- IQ-TREE (Nguyen et al., 2015) also fast and relatively
accurate

- FASTTREE(Price et al., 2009) is very fast, but (excessive)
tradeoffs with accuracy (per Zhou et al. (2017))



New this year: CASTER - site based quartet method

Zhang et al. (2025)



Can visualize support for different resolutions across the genome

Zhang et al. (2025)



Incorporates subsitution models - but not really model based. No
branch lengths.



How well CASTER performs on hard problems (like ones that
violate the simple conditions of simulations) is not clear!
Very fast! 11 hours for 140 genes across 1,100 taxa on a data set
we tried, but the tree did not align well with our
expectations/accepted taxonomy.

If you have to use “quick and dirty” or black box methods in
order to be able to analyze large data sets - more data may
result in WORSE answers
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Is the species tree even what you want?



Different gene trees can drive different conclusions

Species relationships between echolocating and nonecholocating
bats (after Teeling 2009). Left: inferences from DNA sequence
data.
Right: traditional species relationships inferred from morphological
characters (and limited sequence data). (Hahn and Nakhleh, 2016)



If you are interested in a trait controlled by one or a few genes, the
species tree may not descibe the evolutionary history.

(Hahn and Nakhleh, 2016)



Treating genomes holistically, rather than as a collection of
nucleotides, codons, or proteins, may help to answer hard
evolutionary questions.

Ancient gene linkages support ctenophores as sister to other
animals (Schultz et al., 2023)



Do you need a whole genome to answer your
questions?

For phylogenetic and population genetic
questions, not necessarily!

Most phylogenetic methods cannot directly handle
whole genome data, but from whole genome
sequencing you can get homologous loci, as well as a
bunch of other stuff!



Do you need a whole genome to answer your
questions?
For phylogenetic and population genetic
questions, not necessarily!

Most phylogenetic methods cannot directly handle
whole genome data, but from whole genome
sequencing you can get homologous loci, as well as a
bunch of other stuff!



Data processing/ascertainment bias



How do the choices we make in

to to

affect
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Ascertainment bias
A bias in parameter estimation or testing caused by
non-random sampling of the data.
(also sometimes overlapping with ‘selection bias’ or
‘acquisition bias’)



Ascertainment bias is ubiquitous!
- Surveying volunteers
- Studying undergraduates
- Sampling across ‘species’
- Discarding rare outliers



Sampling across
the tree of life
(Hug et al., 2016)



It is important to consider what models of evolution are appropriate
for your data types

Entropy (rate proxy), GC content

Extreme rate heterogeneity in Ultra Conserved Elements, can be
handled with appropriate partitioning
(Tagliacollo and Lanfear, 2018)
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Should you trim your alignments?



Short Tree

Long Tree



Short Tree

Long Tree



How surprised should we be to see no invariant sites?
Very surprising, unless branches are very long

but only if we looked for them!

Can correct analysis of only variable sites (e.g. SNPs) by using
appropriate model (implemented in most inference software)
(Lewis, 2001; Felsenstein, 1992)
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Pay attention to data ‘clean-up’ steps.
e.g.

Minor allele frequency cutoffs
Removing non-biallelic sites (multiple hit)
Filtering out high rate regions
’Trimming’ alignments

One method’s “noise” is another method’s data!



“it is possible in many cases to correct the ascertainment bias
relatively easily, if reliable information is available regarding the
details of the ascertainment scheme.” (Nielsen, 2004)

This information is not always available. Bias can be driven by the
true, evolutionary history you are attempting to estimate!



“it is possible in many cases to correct the ascertainment bias
relatively easily, if reliable information is available regarding the
details of the ascertainment scheme.” (Nielsen, 2004)

This information is not always available. Bias can be driven by the
true, evolutionary history you are attempting to estimate!



Despite the large volume of data in genomic studies,
ascertainment bias is still an issue
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Case studies:
Phylogenetics of Penstemon using RADseq data
Tracing gonorrhea outbreaks



Phylogenetics of Penstemon using RADseq
data
Question: How often have transitions between
hummingbird and bee pollination occurred in
Penstemon?

(Wessinger et al., 2016)



Data:
Restriction site-associated DNA sequencing (RADSeq)
83 species, two samples per species
No closely related reference genome



RADseq
Uses restriction enzymes to fragment DNA
Targets sequencing to the same regions across taxa

(figures from floragenex.com)



In the absence of a reference genome, you need to cluster reads
A ’cluster’ is an inference of homology

Clustered using Stacks (Catchen et al., 2011)



Several factors can cause drop-out of alleles in RAD-seq data (i.e.
not observing homologous alleles)

- Mutations at restriction digest sites
- Clustering parameters exclude homologous regions
- Low coverage



There have been many conflicting studies on the importance of
missing data in phylogenetic analyses,
broadly, as long as missing data is random, it shouldn’t be very
problematic, but phylogenetically-biased missing data is likely to be.
(Roure et al., 2013; Lemmon et al., 2009)



Missing data in RADseq can mislead inference

(Leaché et al., 2015)



But excluding sites with high levels of missing data doesn’t solve
the problem.

It biases rate estimation downwards by preferentially removing high
rate loci

(Huang and Knowles, 2014)



But excluding sites with high levels of missing data doesn’t solve
the problem.
It biases rate estimation downwards by preferentially removing high
rate loci

(Huang and Knowles, 2014)



Advice?

“Given that the data matrix reflects complex interactions between
aspects of library construction and processing with the divergence
history itself, our results also suggest that general rules-of-thumb
are unlikely.”
(Huang and Knowles, 2014)
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Tradeoffs:
Decreasing similarity cutoff captures more loci shared across
the tree, at risk of incorrect homology
Decreasing taxon representation threshold allows you to
capture more loci, but representing fewer individuals



Approach

Investigate a range of parameters

(Wessinger et al., 2016)



Missing data is phylogenetically biased



Across full dataset, many loci are only found in one of the major
clades

(Wessinger et al., 2016)



Variation within clades is better captured by dividing the data set
and clustering separately



Build (and report!) multiple trees using different filtering
parameters

Trees from separate clade analyses (Wessinger et al., 2016)



Transitions to hummingbird pollination have occured many times
from a bee-pollinated ancestor.

(Wessinger et al., 2019)



Summary:
Bias:

Clustering parameters drive non-random missing data
Potential effect on inference:

No topological resolution
Tip branch lengths are shortened
Non-homologous regions align

Mitigation:
Estimate relationships under a range of filtering
parameters

Conclusions:
Branch lengths and bootstrap support differ across
filtering parameters
Different data sets may be appropriate at different
phylogenetic scales
Evolutionary inferences about pollinator shifts need to be
robust to this uncertainty



Case study - tracing gonorrhea outbreaks



Rapid phylogenetic updating to trace
gonorrhea outbreaks

Collaboration with
Jack Cartee , Jeanine Abrams-McLean , and Jasper Toscani Field

(former PhD student, UC Merced)



Neisseria gonorrhoeae
- Gram-negative, diplococci bacteria
- Responsible for the sexually

transmitted infection known as
gonorrhea

- One of two pathogenic Neisseria
species known to infect humans

- WHO estimated 82 million new
cases among adults worldwide in
2020



Recent increase in rates of gonorrhea infections



Neisseria gonorrhoeae has progressively developed resistance to
each single dose antibiotic.

Only remaining recommended treatment option is dual
therapy with a ceftriaxone plus azithromycin



Neisseria gonorrhoeae has progressively developed resistance to
each single dose antibiotic.

Only remaining recommended treatment option is dual
therapy with a ceftriaxone plus azithromycin



“It is widely recognised that few antimicrobials remain effective in
the treatment of Neisseria gonorrhoeae infection and that
gonorrhoea could become untreatable in the future.”
(Chisholm et al. Sex Transm Infect 2015)



To track and control outbreaks, the CDC is tracing evolutionary
history of gonorrhea, across the US and globally.



Approach:
Whole genomic sequencing of Neisseria gonorrhea isolates - up
to thousands of lineages
Phylogenetic inference to track geographic spread and
horizontal gene transfer of resistance genes





Challenges:
Thousands of samples; new isolates sequenced every day
Speed from sampling → phylogeny important
Need to rely on phylogenies for public health action (requires
high confidence)
Often very little nucleotide variability, but horizontal gene
transfer is common.



Potential issues:
Sequencing error
Effect of choice of reference genome



Sequencing error
Potentially problematic when real variable sites are rare

Sequencing errors are likely to be singletons

Will overestimate tip branch lengths



Currently, coverage and error information from sequence reads are
discarded following to
We have information on confidence in individual base calls, but
don’t use it

Kuhner and McGill (2014) developed a correction for sequencing

error in maximum likelihood phylogenetic inference.
Uses a constant expected error per site



Could use a “genotype likelihood”, capturing coverage and read
quality (Nielsen et al., 2011)

Not currently implemented in phylogenetic likelihood models



At high coverage, effect of sequencing error is likely
low!



Effect of reference choice
Reference based mapping of short reads can speed up generating a
consensus sequence.



BUT: Reference choice can affect evolutionary inference

- In humans, in highly polymorphic regions variant calling is biased
toward the the reference base (Brandt et al., 2015)

- In fragmented DNA samples from beetles, branch lengths change
based on reference choices

(Kanda et al., 2015)
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BUT: Reference choice can affect evolutionary inference

- In humans, in highly polymorphic regions variant calling is biased
toward the the reference base (Brandt et al., 2015)

- In fragmented DNA samples from beetles, branch lengths change
based on reference choices

(Kanda et al., 2015)



In experimental re-analysis of UCE data, error rate is
correlated with distance to reference genome, and errors are
strongly biased to the reference base

(Toscani-Field and McTavish, work in progress)



Reference choice can affect topology

Gopalakrishnan et al. (2017)



How much does what reference you use matter when
reconstucting Neisseria gonorrhoeae phylogenies?

Hands on exercise! https://github.com/
snacktavish/TreeUpdatingComparison/blob/
master/TreeUpdating.md

https://github.com/snacktavish/TreeUpdatingComparison/blob/master/TreeUpdating.md
https://github.com/snacktavish/TreeUpdatingComparison/blob/master/TreeUpdating.md
https://github.com/snacktavish/TreeUpdatingComparison/blob/master/TreeUpdating.md


Summary
Bias: Reference choice
Effect on inference:

Errors may be biased towards the sites found in the
reference genome used for assembly
Not mapping reads on lineages more distant from
reference genome can decrease those branch lengths

Mitigation: Use multiple reference genomes, compare results
Conclusions:

When a closely related reference is available, alternatives
worsen inference
Sequence calls do change basde on choice of reference
BUT phylogenetic conclusions were not affected



Big picture
All data sets are biased, genome scale data is no
exception
Careful project planning helps
Interrogate potential biases in data sets AND
methods



What to do?
- What data will answer your questions?
- Are there existing data you want to be able

integrate with?
- Consider in which direction biases are likely to

sway results
- Use the most an appropriate available model for

your data
- Re-sample your data to test if your key

conclusions are robust to choices
- Simulation approaches can test if parameters of

interest are affected by sampling and
ascertainment schemes



“The phylogenomic approach is, despite its flaws,
surprisingly robust, as most pipelines will lead to the
recovery of a similar species tree topology.

This can be explained by the sheer quantity of
phylogenetic signal accumulated when thousands of
molecular markers are combined.”
(Simion et al., 2020)



Questions?
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