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The quantity of available sequence data for inferring evolutionary
relationships is increasing rapidly

http://genome.wellcome.ac.uk/



�With the advent of modern molecular biology, the

ability to collect biological sequence data has

out-paced the ability to adequately analyze these

data�
� Je� Thorne (Evolutionary biologist)

Thorne et al., Journal of Molecular Evolution. 1991
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There are a lot of choices to make!



Biological questions

What do you want to know?

What do you already know?

Technical questions

What data is right for our questions?

Is a closely related reference genome available?

How should we process and analyze our data?

What biases may be a�ecting our inferences?
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General approach

- Decide what to sequence ( to )

- Consensus sequence, alignment, locus selection
( to )

- Evolutionary analyses ( to )

- Success!



There are a lot of possible paths you can take!

Flowchart capturing genomic analysis pipelines used
by participants at Trees in the Desert workshop, May
2019



What to sequence?

to



Di�erent sequencing approaches enrich the samples for di�erent

components of the genome

Enrichment (smallest to largest proportion of genome)

Directed PCR

Targeted enrichment, Rad-tag etc

Transcriptome

Whole genome

Depending on your questions, any of these could be the best option!



Directed PCR

Simple and cheap for a small number of genes

Doesn't scale so well to many genes

Doesn't sound fancy



Targeted enrichment (e.g. Ultra-conserved
elements, probes for orthologous single copy genes,
etc.)

Use hybridization to enrich particular regions

Works well even on degraded DNA

Need to synthesize probes speci�c to each region
- need data to get data!

Data sets can be combined across projects if
same probe set applied



Non-targeted enrichment (RAD-tag, ddRAD
etc.)

Select randomly distributed, but consistent,
genome regions

Comparable across closely related taxa, but not
more distant taxa

Each locus has very few variable sites (not good
for generating gene trees)



Whole transcriptome

Enriched for expressed protein coding genes

Content will vary based on cell type,
environment, etc.

Provides expression level data



Whole genome sequencing

Capture all the data

In a phylogenetic context, currently only cost
e�ective for small genomes

Annotation is hard! Often need transcriptome to
get genes

Mapping or assembly can be slow



Need to put the pieces back together!

to



Genomic sequencing

You have all the data!

You have to deal with all of the data.



De novo assembly

(Baker, 2012)



Mapping to a reference genome



To make evolutionary statements, you need to align genomic

regions across taxa.

Depending on evolutionary history this can be easy or hard!

(Darling et al., 2008)
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An alignment is a statement of shared ancestry



Gene tree (Locus tree)
The ancestry of a homologous region of the genome

that has a single evolutionary history (no
recombination)

Enrichment methods focus our sequencing e�orts on
these regions



Gene duplication and loss

Orthology Paralogy

Inference of homology is not incorrect! But our current models are
limited. If you treat paralogs as orthologs, you can make incorrect
inferences. �gure from Casey Dunn



�investigation of genes with extreme support for turtle placement

revealed unappreciated paralogy in a small proportion of alignments

(<1%) that had an extraordinary in�uence on the inferred

placement of turtles.�

(Brown and Thomson, 2016) (Chiari et al., 2012)



Challenge: The true (unknown) phylogenetic
history is needed to assess orthology vs paralogy



�We used to be so blissful, back in the day. We just had data for

one gene.�

Paul Lewis (this morning)



Integrated approaches can jointly estimate gene trees and species

trees

(Boussau et al., 2013) But are computationally expensive.



As we densely sample genomes and taxa, the size of
a `locus' or `un-recombined region' will get smaller.



Jointly estimate recombination and ancestries along genomes

Currently only applied within humans! (Kelleher et al., 2018)



Species tree methods are robust to intra-locus recombination

(based on analyses of simulated data)

(Lanier and Knowles, 2012)

Robinson Foulds (RF)

distance: the symmetric

di�erence between trees -

the number of branches in

tree 1 and not in tree 2 +

the number of branches in

tree 2 and not in tree 1.



Do you need a whole genome to answer your
questions?

For phylogenetic and population genetic

questions, not necessarily!

Most phylogenetic methods cannot directly handle
whole genome data, but from whole genome
sequencing you can get homologous loci, as well as a
bunch of other stu�!
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Ascertainment bias

A bias in parameter estimation or testing caused by
non-random sampling of the data.
(also sometimes overlapping with `selection bias' or
`acquisition bias')



Ascertainment bias is ubiquitous!

- Surveying volunteers

- Studying undergraduates

- Sampling across `species'

- Discarding rare outliers



Sampling across the tree of life

(Hug et al., 2016)



Ascertainment bias in genomic data



It is important to consider what models of evolution are appropriate

for your data types

Entropy (rate proxy), GC content, Multinomial likelihood

Extreme rate heterogeneity in Ultra Conserved Elements, can be

handled with appropriate partitioning

(Tagliacollo and Lanfear, 2018)



It is important to consider what models of evolution are appropriate

for your data types

Entropy (rate proxy), GC content, Multinomial likelihood

Extreme rate heterogeneity in Ultra Conserved Elements, can be

handled with appropriate partitioning

(Tagliacollo and Lanfear, 2018)



Analyzing only variable sites (e.g. Single Nucleotide

Polymorphism (SNP) analyses)

Instead of `Anything Can Happen Now'

`Something De�nitely Happened Once!'

This a�ects our ability to estimate branch lengths using likelihood

Intuitively, will increase inferred branch lengths

can also a�ect tree topology
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Short Tree

Long Tree



Short Tree

Long Tree



How surprised should we be to see no invariant sites?

Very surprising, unless branches are very long

but only if we looked for them!

Can correct by applying Lewis (2001) model for analysis of only

variable sites implemented inference software (Leaché et al., 2015)
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�it is possible in many cases to correct the ascertainment bias

relatively easily, if reliable information is available regarding the

details of the ascertainment scheme.� (Nielsen, 2004)

This information is not always available. Bias can be driven by the

true, evolutionary history you are attempting to estimate!
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Despite the large volume of data in genomic studies,
ascertainment bias is still an issue
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Two case studies:
Phylogenetics of Penstemon
Tracing gonorrhea outbreaks



Phylogenetics of Penstemon using RADseq

data

Question: How often have transitions between
hummingbird and bee pollination occurred in
Penstemon?

(Wessinger et al., 2016)



Data:

Restriction site-associated DNA sequencing (RADSeq)

83 species, two samples per species

No closely related reference genome



RADseq

Uses restriction enzymes to fragment DNA

Targets sequencing to the same regions across taxa

(�gures from �oragenex.com)



In the absence of a reference genome, you need to cluster reads

A 'cluster' is an inference of homology

Clustered using Stacks (Catchen et al., 2011)



Several factors can cause drop-out of alleles in RAD-seq data (i.e.

not observing homologous alleles)

- Mutations at restriction digest sites

- Clustering parameters exclude homologous regions

- Low coverage



There have been many con�icting studies on the importance of

missing data in phylogenetic analyses,

broadly, as long as missing data is random, it shouldn't be very

problematic, but phylogenetically-biased missing data is likely to be.

(Roure et al., 2013; Lemmon et al., 2009)



Missing data in RADseq can mislead inference

(Leaché et al., 2015)



But excluding sites with high levels of missing data doesn't solve

the problem.

It biases rate estimation downwards by preferentially removing high

rate loci

(Huang and Knowles, 2014)
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Advice?

�Given that the data matrix re�ects complex interactions between

aspects of library construction and processing with the divergence

history itself, our results also suggest that general rules-of-thumb

are unlikely.�

(Huang and Knowles, 2014)



Advice?
�Given that the data matrix re�ects complex interactions between

aspects of library construction and processing with the divergence

history itself, our results also suggest that general rules-of-thumb

are unlikely.�

(Huang and Knowles, 2014)



Advice?
�Given that the data matrix re�ects complex interactions between

aspects of library construction and processing with the divergence

history itself, our results also suggest that general rules-of-thumb

are unlikely.�
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Tradeo�s:

Decreasing similarity cuto� captures more loci shared across

the tree, at risk of incorrect homology

Decreasing taxon representation threshold allows you to

capture more loci, but representing fewer individuals



Approach

Investigate a range of parameters

(Wessinger et al., 2016)



Missing data is phylogenetically biased



Across full dataset, many loci are only found in one of the major

clades

(Wessinger et al., 2016)



Variation within clades is better captured by dividing the data set

and clustering separately



Build (and report!) multiple trees using di�erent �ltering

parameters

Trees from separate clade analyses (Wessinger et al., 2016)



Summary:

Bias:

Clustering parameters drive non-random missing data

Potential e�ect on inference:

No topological resolution

Tip branch lengths are shortened

Non-homologous regions align

Mitigation:

Estimate relationships under a range of �ltering

parameters

Conclusions:

Branch lengths and bootstrap support di�er across

�ltering parameters

Di�erent data sets may be appropriate at di�erent

phylogenetic scales

Evolutionary inferences about pollinator shifts need to be

robust to this uncertainty



Case study - tracing gonorrhea outbreaks



Rapid phylogenetic updating to trace

gonorrhea outbreaks

Collaboration with
Jack Cartee , Dr. Jeanine Abrams-McLean , and Jasper Toscani

Field (PhD student, UC Merced)



Neisseria gonorrhoeae

- Gram-negative, diplococci bacteria

- Responsible for the sexually

transmitted infection known as

gonorrhea

- One of two pathogenic Neisseria
species known to infect humans

- WHO estimated 78 million new

cases among adults worldwide in

2012



Recent increase in rates of gonorrhea infections



Neisseria gonorrhoeae has progressively developed resistance to

each single dose antibiotic.

Only remaining recommended treatment option is dual
therapy with a ceftriaxone plus azithromycin



Neisseria gonorrhoeae has progressively developed resistance to

each single dose antibiotic.

Only remaining recommended treatment option is dual
therapy with a ceftriaxone plus azithromycin



�It is widely recognised that few antimicrobials remain e�ective in

the treatment of Neisseria gonorrhoeae infection and that

gonorrhoea could become untreatable in the future.�

(Chisholm et al. Sex Transm Infect 2015)



To track and control outbreaks, the CDC is tracing evolutionary

history of gonorrhea, across the US and globally.



Approach:

Whole genomic sequencing of Neisseria gonorrhea isolates - up

to thousands of lineages

Phylogenetic inference to track geographic spread and

horizontal gene transfer of resistance genes







Challenges:

Thousands of samples; new isolates sequenced every day

Speed from sampling → phylogeny important

Need to rely on phylogenies for public health action (requires

high con�dence)

Often very little nucleotide variability, but horizontal gene

transfer is common.



Potential issues:

Sequencing error

E�ect of choice of reference genome



Sequencing error
Potentially problematic when real variable sites are rare

Sequencing errors are likely to be singletons

Will overestimate tip branch lengths

Kuhner and McGill (2014) developed a correction for sequencing

error in maximum likelihood phylogenetic inference.

Uses a constant expected error per site



Currently, coverage and error information from sequence reads are

discarded following to

We have information on con�dence in individual base calls, but

don't use it



Could use a �genotype likelihood�, capturing coverage and read

quality (Nielsen et al., 2011)

Not currently implemented in phylogenetic likelihood models



At high coverage, e�ect of sequencing error is likely
low, but newer long read data have higher error rates!



E�ect of reference choice
Reference based mapping of short reads can speed up generating a

consensus sequence.



BUT: Reference choice can a�ect evolutionary inference

In humans, in highly polymorphic regions variant calling is biased

toward the the reference base (Brandt et al., 2015)

In fragmented DNA samples from beetles, branch lengths change

based on reference choices

(Kanda et al., 2015)
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BUT: Reference choice can a�ect evolutionary inference

In humans, in highly polymorphic regions variant calling is biased

toward the the reference base (Brandt et al., 2015)

In fragmented DNA samples from beetles, branch lengths change

based on reference choices

(Kanda et al., 2015)



A reference mapping based approach will discard
information about structural variants not found in the
reference



Reference choice can a�ect topology

Mapping sequencing reads to reference genomes requires similarity

cuto�s that generate biased missing data (Bertels et al., 2014)



Problem: The true (unknown) phylogenetic history
will a�ect how reads map across the genome.



How can we we e�ciently estimate phylogenies from
genomic data, without being biased by the
evolutionary history itself?

Take advantage of prior inferences.
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Phylogenetically informed phylogenomic updating approach:

Assembles only homologous regions of interest

Uses phylogenetic structure to select multiple references to

generate consensus sequence

Tree search speed up due to starting tree

github.com/mctavishlab/phycorder

github.com/mctavishlab/phycorder


Tree from traditional method Updated tree



Results:

Ok... the tree is di�erent! but is it better or worse?



Testing the approach using simulations:
TreeToReads
Takes into account:

- Phylogeny and model of evolution

- Insertions and deletions

- Distribution of mutations across the genome

- Read coverage

- Sequencing error pro�les (observed or estimated)

Generates short read data with which to test assembly, alignment

and inference pipelines.



Input genome for simulation is a tip on simulated tree

Can test alignment to other empirically observed genomes

(McTavish et al., 2017)

github.com/snacktavish/treetoreads

Other new approaches for generating reads from phylogenies:

NGSphy (Escalona et al., 2018), Jackalope (R package) (Nell,

2019)

github.com/snacktavish/treetoreads


Take observed outbreak tree

,

Simulate reads using empirical parameters



Infer trees from reads using two di�erent reference genomes.

Reference within outbreak Distant (1% sequence divergence)

reference



Simulation summary

• In this example, even distant reference genome did not a�ect

parameter of interest (monophyly of outbreak), although it did

a�ect branch lengths

• E�ects of read mapping parameters and reference genome

choice are likely to be idiosyncratic

• By using empirical estimates for evolutionary model, can

investigate e�ects on parameters of interest

• Currently applying this approach to test gonorrhea

phylogenetic updating procedure



Summary

Bias: Sequencing error, reference choice

E�ect on inference:

Sequencing error can increase terminal branch lengths

relative to internal branches

Not mapping reads on lineages more distant from

reference genome will decrease those branch lengths

Mitigation: Use multiple reference genomes, simulation based

tests to assess accuracy

Conclusions:

When a closely related reference is available, alternatives

worsen inference

At high (around 40x) coverage all mutations are

con�dently recovered

Even at lower coverage (around 5x) high con�dence in

monophyly of outbreak clade



Big picture

All data sets are biased, genome scale data is no
exception

Careful project planning helps

Interrogate potential biases in data sets



What to do?

- What data will answer your questions?

- Are there existing data you want to be able
integrate with?

- Consider in which direction biases are likely to
sway results

- Use the most an appropriate available model for
your data

- Re-sample your data to test if your key
conclusions are robust to choices

- Simulation approaches to test if parameters of
interest are a�ected by sampling and
ascertainment schemes



Questions?
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