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- May be multiple local optima

- Need to maximize the likelihood for each topology
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Enormous numbers of topologies to consider

Taxa Unrooted binary trees Rooted binary trees
3 1 3
4 3 15
5 15 105
6 105 945
7 945 10,395
8 10,395 135,135
9 135,135 2,027,025
10 2,027,025 3 x 107

15 7 x 1012 2 x 1014

20 2 x 1020 8 x 1021

50 3 x 1074

100 2 x 10182

1,000 2 x 102860

10,000 8 x 1038658

1,000,000 1 x 105866723
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it is estimated that the there are between 1078 to 1082 

atoms in the known, observable universe.



There may be multiple local likelihood optima

Parameter
values

(From Zwickl)
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Need to maximize the likelihood for each topology

I Update numerical parameters of the model of
sequence evolution

I Branch-length parameters



(From Swo�ord)



Neat widgets created by Mark Holder:
http://phylo.bio.ku.edu/mephytis/brlen-opt.html

http://phylo.bio.ku.edu/mephytis/tree-opt.html

http://phylo.bio.ku.edu/mephytis/brlen-opt.html
http://phylo.bio.ku.edu/mephytis/tree-opt.html


How do algorithms for Maximum Likelihood
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The general concept of heuristic tree search:

1. Start with a tree

2. Calculate the likelihood of that tree given your data
(alignment)

3. Look at some trees that are similar

4. Calculate the likelihood for those trees

5. See if you did any better! Return to step 3.



(From Zwickl)



Questions for a heuristic search:

I Where to start the search?

I How are new trees proposed?

I How do we decide whether to continue looking at trees similar
to your new tree or to your old tree?

I How do you know if you are done?
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Where to start the search?

I User supplied starting tree

I Star decomposition or Stepwise Addition

I A randomly chosen tree





(slide from POL)
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Stepwise addition:

Greedy, but can introduce a new taxon on path between two taxa
Relatively fast way to generate a not-terrible starting tree
Can depend on input order of taxa



Does your starting tree matter?

I Can help escape local optima

I When data is uninformative, bias in starting tree
can a�ect estimate



Heuristics: starting point

?

?
?

?



How are new topologies proposed?

I Branch swapping and tree rearrangement



Heuristics: proposing new values

?



Nearest neighbor interchange (NNI)

(From Zwickl)



NNI Treespace

NNI



Subtree Pruning Regrafting (SPR) Tree Bisection Reconnection
(TBR)



SPR/TBR moves in NNI treespace

NNI SPR TBR



Re-arranging your tree requires updating branch
lengths and evolutionary model parameters.
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Localizing branch length optimization important for
speed of analysis



How do you decide if you should accept a new tree?

I Hill climbing: likelihood score is better (RAxML)

I Computational analog of evolution by natural selection
(Garli)



How do you know if you are done?

I Stop tree search when likelihood stops improving.

I Searches are stochastic, so there is no guarantee
that any search �nds the true maximum
likelihood topology and parameter values!

I Continue searching until you run at least one
additional search that �nds the same topology as
the best overall result.
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In lab today we will discuss and apply two software packages that
estimate ML trees

I Garli (Zwickl, 2006)
I Stochastic, genetic algorithm-like approach
I Computational analog of evolution by natural selection.

I RAxML (Stamatakis, 2006)
I Hill-climbing algorithm
I GTR+CAT approximation provides speedup over GTR+G

- For modeling rate heterogeneity across very large trees (e.g.,
hundreds of taxa), and is not recommended for smaller trees.

- Di�erent than Lartillot CAT model using empirical amino acid
pro�les (named independently around same time)



ML tree inference software:
For small datasets (< 50 taxa), all of the ML tree inference
programs perform well
For large datasets (hundreds of sequences):

I PAUP* is very rigorous, but slower

I RAxML is generally the fastest

I GARLI often has a slight edge over RAxML in optimality
(although often more variability)



Simulations by Zwickl (Garli)



ML tree inference software:
For VERY large datasets (1000+sequences):

I RAxML/EXaML (Kozlov et al., 2015) is very e�cient,
especially with multiple runs

I IQ-TREE (Nguyen et al., 2015) also fast and accurate (will be
presented Tuesday by Bui Quang Minh)

I FASTTREE(Price et al., 2009) is very fast, but (excessive)
tradeo�s with accuracy (per Zhou et al. (2017))



Log-likelihood score di�erences between inferred trees and

�best-observed� trees plotted against topological distances.(Zhou et al.,

2017)



Your maximum likelihood tree is a best estimate of the
relationships, given your data (alignment) and model.

How much does the di�erences between trees with similar
likelihoods matter?
This can be a challenging statistical question - in depth discussion
in chapter posted at
https:

//molevol.mbl.edu/images/b/bb/Tree-hyp-testing.pdf

(Holder and McTavish, 2016)

https://molevol.mbl.edu/images/b/bb/Tree-hyp-testing.pdf
https://molevol.mbl.edu/images/b/bb/Tree-hyp-testing.pdf
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Measuring di�erences between trees:

I Robinson�Foulds (RF) distance: (A + B) where A is the
number of splits in the �rst tree but not the second tree and B
is the number of splits second tree but not the �rst tree.

I Weighted RF distance: RF distance weighted by edge lengths.
Missing split is counted as length 0.



It is important to consider and attempt to correct for biases in your
tree estimation.
Some examples:

I bias in data collection (ascertainment bias)

I model adequacy

I con�rmation bias



How surprised are you?
Aln 1

Aln 2



Short Tree

Long Tree



How surprised should we be to see the second alignment?
Not seeing any invariant sites is very surprising unless branches are
very long

but only if we looked for them!

Some data processing generates alignments of exclusively variable
sites.
Extension of Lewis (2001) model to correct for this is implemented
in RAxML
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Ascertainment bias

A bias in parameter estimation or testing caused by non-random
sampling of the data.
'Ascertainment bias' in a broad sense, covers `selection bias' or
`acquisition bias', all three terms have been used for overlapping
issues.



�it is possible in many cases to correct the ascertainment bias
relatively easily, if reliable information is available regarding the
details of the ascertainment scheme.� Nielsen (2004)

this information is not always available
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Model adequacy

No matter how thorough your tree search is, or how big you data
set is, if your model is inadequate, you can get the wrong tree with
very high con�dence.



Selection of models in phylogenetics often relies on comparison
among models

but the best �tting model from a set of models can still be
inadequate!

`the true model is always more complex than any model in our set
of models' - Swo�ord
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Several papers published already this year on evaluating model
adequacy.
(Brown and Thomson, 2018; Richards et al., 2018; Duchêne et al.,
2018)

More on model adequacy tomorrow evening with Michael Landis.



Con�rmation bias:

Often datasets, methods, and models are only re-checked if your
conclusions don't match your expectations.

This means wrong results that �t your assumptions, or wrong
results with exciting interpretations,
are more likely to be published!
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Con�rmation bias:

Dunn et al. (2015)



`Phylotocol'

I New approach to decreasing con�rmation bias and increasing
reproducibility

I Document in advance all the planned methods and analyses

I Publish edits to strategy and motivation for changes

I Modeled after the NIH clinical trial template

(DeBiasse and Ryan, 2018)



Summary:

I For >15 sequences, an unfathomably large number of trees are
possible.

I We have to rely on heuristics that are not guaranteed to �nd
the actual (�global�) optimal solution.

I We have control on how thorough our searches are

I Conduct multiple searches to look for evidence that you are
not �nding trees which are local optima.

I Consider and address potential biases in your analyses



Questions?



Computer lab:

I Perform ML phylogenetics search

I Compare searches and trees

I Work with variety of phylogenetic software and �le formats

I Bootstrapping

I Consequences of model misspeci�cation

I Analyzing data on shared cluster



a brief digression into �le formats



Newick

I Parenthetical tree format

I Rooted vs. unrooted trees are not di�erentiated

I Some programs interpret polytomy at root as `unrooted

I Branches and nodes not well di�erentiated

I A name can contain and characters except blanks, colons,
semicolons, parentheses, and square brackets

(((A,B),(C,D)),E);



Nexus

I Starts with #nexus

I Can contain blocks of alignments, trees, commands, and more!

I Blocks between `begin' and `end'

I Trees in Newick format, prepended with [&U] unrooted or
[&R] rooted



Nexus

http://hydrodictyon.eeb.uconn.edu/eebedia/index.php/

Phylogenetics:_NEXUS_Format

http://hydrodictyon.eeb.uconn.edu/eebedia/index.php/Phylogenetics:_NEXUS_Format
http://hydrodictyon.eeb.uconn.edu/eebedia/index.php/Phylogenetics:_NEXUS_Format


NeXML

I Phylogenetic data as XML

I Can capture all information from Nexus

I Full semantic annotation

I Easily extensible



NeXML
Computer readable, but not very human readable



Phylip (sequence data format)

I First line must be two integers: <number of taxa> <number
of sites>

I Sequence ID followed by spaces up to 10 char. (will trunctate
names, often resulting in idential names)

I No duplicate names

I Relaxed phylip up to 250 characters followed by a space



Phylip interleaved

Phylip sequential



Fasta (sequence data format)

I Description line before each sequence starts with (">")
symbol in the �rst column



To translate between data �le formats in paup:
paup> execute exampledata.nex

paup> export file=example.fas format=fasta

Format options include fasta, phylip, nexus among others
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