
Machine learning in population and
phylogenetics

Megan L Smith
Woods Hole Workshop on Molecular Evolution



1



2



Goals

• Why might we use machine learning in population and phylogenetics?

• How do some supervised machine learning algorithms work?

• How have supervised machine learning approaches been applied in
population and phylogenetics?

• What are the challenges and limitations of these approaches, and how
do we move forward?

3



Table of contents

1. Introduction and Motivation

2. Overview of Supervised Machine Learning Algorithms

3. Challenges and Future Directions

4. How and when should I use Machine Learning?

5. Useful Tools

6. Jupyter Notebook Example

4



Introduction and Motivation



What is Machine Learning?

• A subfield of Artificial Intelligence.

• Uses data to perform inference without explicit mathematical models.

• Identifies patterns, which can be used to predict unknown outcomes.

• Major classes: unsupervised vs. supervised

5



Unsupervised Machine Learning

• Finds patterns within data.

• No notion of prediction.

• example: Principle Component Analyses

6



Supervised Machine Learning

• Goal: To learn to predict an output from some input.

• Requires training data to learn the mapping between input and output.

• Tunes parameters to maximize prediction accuracy

7



Motivation

• The growing availability of genomic data and theoretical advances have
led to an increased appreciation of the need to consider complex
models when analyzing genomic data in evolutionary contexts.

• Sometimes, we cannot use full Likelihood and Bayesian methods to
analyze large genomic datasets under complex models due to
intractable likelihood functions and computational challenges.

• This has led to a growing popularity of likelihood-free approaches.

8



Approximate Bayesian Computation

Approximate Bayesian Computation (ABC) is a likelihood-free
approach that has been frequently used in population genetics.

Imagine we want to use ABC to select the best demographic model
given our observed sequence data.

9



Approximate Bayesian Computation

Step 1: Simulate a prior distribution.

10



Approximate Bayesian Computation

Step 1: Simulate a prior distribution.

Model 1, Replicate 1:
NA : U(5000, 100000); Sample: 30,587
N1 : U(5000, 100000); Sample: 52,765
N2 : U(5000, 100000); Sample: 41,582
𝜏 : U(1000, 100000); Sample: 75,283

11



Approximate Bayesian Computation

Step 1: Simulate a prior distribution.

Repeat this process tens of thousands of times for each model to
generate a prior!

12



Approximate Bayesian Computation

Step 2: Calculate summary statistics for each simulated dataset in
the prior (e.g., 𝜋, FST).

13



Approximate Bayesian Computation

Step 3: Calculate the same summary statistics for your empirical
data.

14



Approximate Bayesian Computation

Step 4: Calculate the distance ρ(D, Di) between empirical and
simulated data, and keep simulated data within some distance of the
empirical data.

15



Approximate Bayesian Computation

Step 5: Calculate the approximate posterior probability of each
model.

16



Strengths of ABC

• It’s very flexible!

• We can consider any model under which we can simulate data.

• We can carefully select summary statistics that we expect will help to
distinguish amongst models.

17



Weaknesses of ABC

• We have to summarize our data using summary statistics, causing
information loss. This is especially true when we have genomic-scale
data!

• Using too many summary statistics leads to a decrease in performance
(i.e., the curse of dimensionality).

• Considering too many models leads to a decrease in performance.

18



Supervised Machine Learning versus ABC

19



Supervised Machine Learning versus ABC

• We are not as limited by the number of statistics we can use, meaning
we don’t have as much information loss.

• In some cases, we can use data directly as input, avoiding any apriori
statistic selection.

• In practice, we can compare more models with greater accuracy.

20



Why do we use machine learning?

• We cannot always use full Likelihood or Bayesian approaches to
compare complex models or estimate parameters from our large
genomic datasets.

• Traditional likelihood-free approaches have limitations that are more
pronounced for large-scale genomic datasets.

• Supervised machine learning allows us to compare complex models
with improved computational effeciency while using our data more
effectively.

21



Overview of Supervised Machine
Learning Algorithms



Outline

Overview of Supervised Machine Learning Algorithms

Decision Trees

Fully Connected Neural Networks (FCNNs)

Convolutional Neural Networks (CNNs)

Graphical Neural Networks

Recurrent Neural Networks

Generative Models

Overview of Algorithms

22



What is a decision tree?

23



What is a decision tree?

24



How do we build decision trees?

Goal: Build a decision tree that can predict whether I will find a slug
at a particular sampling site.

25



How do we build decision trees?

26



How do we build decision trees?

27



How do we build decision trees?

28



How do we build decision trees?

29



How do we build decision trees?

30



How do we build decision trees?

31



How do we build decision trees?

32



How do we build decision trees?

• We recursively split our training data using the features that perform
best.

• We stop when we meet some criterion (maximum depth, minimum
number of samples in leaf, minimum decrease in error metric).

• We can use decision trees for classification or regression.

• We can learn about which predictors drive classification from our
decision trees.

• Decision trees are prone to overfitting.

33



Random Forests

• To address this issue, we can use a collection of decision trees!

• We construct a Random Forest Classifier (or regressor) by doing the
following.

• For each iteration i:
• Generate a bootstrapped dataset.
• Create a decision tree using the bootstrapped dataset, and only use a
random subset of variables when constructing each node.

• When classifying data, use all trees, and consider the class that
the most decision trees vote for to be the predicted class.

• This is called Bagging (bootstrapping + aggregating).

34



Random Forests

35



Advantages of Random Forests

• Less prone to overfitting.

• We can estimate ’out-of-bag’ error rates very easily to assess power.
• For each element of the training data:

• Predict the element’s class using the decision trees constructed
without reference to that element.

• Calculate how often elements of each class are accurately
predicted.

36



Examples: delimitR

Goal: To delimit species while considering population-level
processes.

37



Examples: delimitR

Goal: To delimit species while considering population-level
processes.

38



Examples: delimitR

• delimitR predicts the best demographic model using SNP data.

• delimitR can consider any model that can be defined in fastsimcoal2
(Excoffier et al., 2013).

• delimitR uses the SFS to summarize the data.

• delimitR achieves error rates < 5% for hundreds of models.

39



Examples: FILET

Goal: To classify genomic windows as introgressed or not, and to
determine the direction of introgression when it occurs.

40



Examples: FILET

Figure 1 from Schrider et al., 2018

41



Examples: FILET

Figure 4 from Schrider et al., 2018

42



Examples: FILET

• FILET predicts whether a genomic region has introgressed across
population or species boundaries.

• FILET uses a suite of hand-crafted summary statistics to summarize the
data.

• FILET achieves reasonable error rates that depend on the divergence
time and time of introgression.

43



Decision Trees and Random Forests

• Decision trees learn how to use features to split data in meaningful
ways, and then can be used to make predictions on unseen data.

• Random Forests are collections of decision trees.

• Decision-tree based classifiers are highly interpretable and outperform
traditional ABC in many cases.

44



Outline

Overview of Supervised Machine Learning Algorithms

Decision Trees

Fully Connected Neural Networks (FCNNs)

Convolutional Neural Networks (CNNs)

Graphical Neural Networks

Recurrent Neural Networks

Generative Models

Overview of Algorithms

45



What are neural networks?

46



What are neural networks?

47



What are neural networks?

48



What are neural networks?

49



What are neural networks?

50



What are neural networks?

51



How do neural networks work?

52



How do neural networks work?

53



How do neural networks work?

54



How do neural networks work?

55



How do neural networks work?

56



How do neural networks work?

57



How do neural networks work?

58



What are activation functions?

59



How do neural networks work?

60



How do neural networks work?

61



How do neural networks work?

62



How do neural networks work?

63



How do neural networks learn?

• We need to learn the weights and biases.

• To do this we use backpropogation.

• Backpropogation uses gradient descent (calculus) to find the values of
the weights and biases that minimize prediction error.

64



How do we train neural networks?

1. Initialize the weighs and biases of the network.

2. For each epoch i:

• Shuffle the training data and divide it into minibatches.
• For each minibatch j:

• Pass the minibatch through the neural network.
• Calculate the loss (i.e., some measure of prediction error.)
• Update weights and biases to improve prediction accuracy.

3. Evaluate prediction accuracy on an independent dataset.

65



How do we train neural networks?

• epochs: the number of training iterations

• minibatches: subsets of the training data used during training

• learning rate: controls how quickly weights and biases are updated

66



How do we build neural networks?

• We decide how to structure our input data.

• We decide what we want to output.

• We decide how many hidden layers to include, how many neurons to
include in each layer, and which activation functions to use.

• We decide how many epochs to use, how many mini-batches to use,
and select a learning rate.

• The number of hidden layers, the numbers of neurons, the choice of
activation functions, the numbers of epochs and mini-batches, and the
learning rate are all referred to as hyperparameters of our network, and
we usually try to optimize these.

67



How do we build evaluate neural networks?

• When training a neural network, we hold out some percentage of our
data as validation data.

• The validation data helps us to assess whether our model is only
memorizing the training data, or whether it will be able to generalize.

• Since we may use error on this validation set to manually (or
automatically) tune our hypterparameters, it is important to also hold
out some of our data as an independent test data set, which should
only be used to evaluate performance after all training, tuning, and
adjustments are complete!

68



Examples: evoNet

Goal: to estimate historical population sizes and detect selection.

69



Examples: evoNet

Figure 6 from Sheehan and Song, 2016
70



Examples: evoNet

Table 3 from Sheehan and Song, 2016

71



Examples: evoNet

• evoNet predicts population sizes through time and a selection history.

• To do this, evoNet includes two rather different outputs!

• evoNet uses a large number of summary statistics.

• evoNet estimates selection class more easily than population sizes.

72



Examples: ml4ils

Goal: to estimate the frequency of concordant quartet topologies
from a set of alignments and gene trees.

73



Examples: ml4ils

Goal: to estimate the frequency of concordant topologies from a set
of alignments and gene trees.

Figure 2 from Rosenzweig et al., 2022

74



Examples: ml4ils

Goal: to estimate the frequency of concordant topologies from a set
of alignments and gene trees.

Summary statistics: sCFs, patristic distances, etc.

75



Examples: ml4ils

Goal: to estimate the frequency of concordant topologies.

Figure 5 from Rosenzweig et al., 2022 76



Fully Connected Neural Networks

• FCNNs are composed of a set of dependent non-linear functions.

• FCNNs learn weights and biases that minimize prediction error.

• We can adjust hyperparameters to build FCNNs that perform well.

• FCNNs rely on some set of features (i.e., summary statistics) to learn the
connection between input and output.

• We saw examples using an FCNN to detect selection, estimate
demographic parameters, and estimate the probability of concordance!
(And there are many more!!)

77



Outline

Overview of Supervised Machine Learning Algorithms

Decision Trees

Fully Connected Neural Networks (FCNNs)

Convolutional Neural Networks (CNNs)

Graphical Neural Networks

Recurrent Neural Networks

Generative Models

Overview of Algorithms

78



What if I want to classify images?

79



What if I want to classify images?

80



What if I want to classify images?

81



What if I want to classify images?

82



What if I want to classify images?

Convolutional Neural Networks (CNNs) are designed to perform well
on input images by improving on fully connected layers in several
ways, including:

1. Scalable

2. Robust to shifts

3. Take advantages of correlations between pixels

83



How do CNNs work?

84



How do CNNs work?

85



How do CNNs work?

86



How do CNNs work?

87



How do CNNs work?

88



How do CNNs work?

89



How do CNNs work?

90



How do CNNs work?

91



How do CNNs work?

92



How do CNNs work?

93



How do CNNs work?

94



How do CNNs work?

95



How do CNNs work?

96



How do CNNs work?

97



How do CNNs work?

98



How do CNNs work?

99



How do CNNs work?

100



How do CNNs work?

101



How do CNNs work?

102



How do CNNs work?

103



How do CNNs work?

104



How do CNNs work?

105



How do CNNs work?

106



How do CNNs work?

107



How do CNNs work?

• Input: Image

• Apply Convolutional Filter

1. Overlay filter on input image.
2. Calculate dot product.
3. Add bias term.
4. Populate feature map.
5. Slide filter, and repeat.

• Activate Feature Map.

• Perform Max Pooling.

• Flatten into vector.

• Feed into fully connected neural network.

108



How do CNNs work?

• learnable parameters: weights and biases (weights for each cell of
each convolutional filter)

• hyperparameters: the number of convolutional layers, the activaiton
functions, the number of filters, the size of the filters, the stride size,
the type of pooling, the FCNN hyperparameters!

109



How do we use CNNs in population genetics?

• We can treat alignments as images!

• This allows us to avoid a priori summarization of our data using
features.

• Instead, our network learns the features directly.

110



How do we use CNNs in population genetics?

Figure 2 from Flagel et al., 2019

111



Examples: Flagel

Goal: to predict whether a genomic window is introgressed.

112



Examples: Flagel

Figure 4 from Flagel et al., 2019

113



Examples: Suvurov

Goal: to infer the unrooted quartet topology.

114



Examples: Suvurov

Figure 2 from Suvorov et al., 2020
115



Examples: Suvurov

Figure 4 from Suvorov et al., 2020

116



Convolutional Neural Networks

• Take images directly as input!

• Bypass the need to summarize the data!

• Have even more hyperparameters than a FCNN!

117


