Machine learning in population and
phylogenetics

Megan L Smith
Woods Hole Workshop on Molecular Evolution

34th Workshop on
Molecular Euolutlon

May 26-June 5, 2023
Ioods Hole, MA.

Do you think people should use machine learning for population and phylogenetics?

As an Al language model, | don't have personal opinions or beliefs. However, | can provide
you with some information on the topic.

Machine learning techniques can be valuable tools in the fields of population genetics and
phylogenetics. These areas of study involve analyzing genetic data to understand the
relationships, evolutionary history, and diversity within populations and species.

Machine learning algorithms can aid in tasks such as genotype imputation, population

structure analysis, genetic variant i and ic tree cor They
can help researchers handle large volumes of data, detect patterns, make predictions, and
identify relevant features that might not be immediately apparent.

Using machine learning for population and phylogenetic analyses can offer several benefits.

It can enhance computational efficiency, improve accuracy in data analysis, and help
uncover hidden patterns or relationships that may be challenging to detect manually.
Additionally, machine learning approaches can provide opportunities for automation and
scalability, allowing researchers to analyze more extensive datasets and explore complex
genetic interactions.

However, it's important to note that machine learning is a tool and not a substitute for
domain expertise. It should be used in conjunction with traditional analytical methods and
biological knowledge to ensure accurate interpretation of results. Careful validation and
verification are essential to ensure that the machine learning models are reliable and
appropriately applied to the specific biological questions at hand.

Moreover, machine learning techniques should be transparent, interpretable, and subject to
rigorous scrutiny to ensure that the results are scientifically meaningful. Ethical
considerations, such as potential biases in the training data or interpretations, should also
be taken into account.

In summary, machine learning can be a valuable tool for population genetics and
phylogenetics, but it should be used judiciously, in conjunction with domain expertise, and

with careful i ion of potential limitati and ethical il

- Why might we use machine learning in population and phylogenetics?
- How do some supervised machine learning algorithms work?

- How have supervised machine learning approaches been applied in
population and phylogenetics?

- What are the challenges and limitations of these approaches, and how
do we move forward?

Table of contents

1. Introduction and Motivation

2. Overview of Supervised Machine Learning Algorithms
3. Challenges and Future Directions
4. How and when should | use Machine Learning?

5. Useful Tools

6. Jupyter Notebook Example

Introduction and Motivation

What is Machine Learning?

- A subfield of Artificial Intelligence.

- Uses data to perform inference without explicit mathematical models.
- Identifies patterns, which can be used to predict unknown outcomes.

- Major classes: unsupervised vs. supervised

Unsupervised Machine Learning

- Finds patterns within data.
- No notion of prediction.

- example: Principle Component Analyses

Supervised Machine Learning

- Goal: To learn to predict an output from some input.
- Requires training data to learn the mapping between input and output.

- Tunes parameters to maximize prediction accuracy

TRAINING ——
—
(=——=
_— %:—' - ——» Prediction
[J=——=
Training data Feature Algorithm Model
with known vector
history
\
Simulations under
some model. Unlabeled data and features

- The growing availability of genomic data and theoretical advances have
led to an increased appreciation of the need to consider complex
models when analyzing genomic data in evolutionary contexts.

- Sometimes, we cannot use full Likelihood and Bayesian methods to
analyze large genomic datasets under complex models due to
intractable likelihood functions and computational challenges.

- This has led to a growing popularity of likelihood-free approaches.

Approximate Bayesian Computation

Approximate Bayesian Computation (ABC) is a likelihood-free
approach that has been frequently used in population genetics.

Imagine we want to use ABC to select the best demographic model
given our observed sequence data.

Approximate Bayesian Computation

Step 1: Simulate a prior distribution.

Approximate Bayesian Computation

Step 1: Simulate a prior distribution.

Model 1, Replicate 1:

Na : U(5000, 100000); Sample: 30,587
N4 : U(5000, 100000); Sample: 52,765
N, : U(5000, 100000); Sample: 41,582
7 : U(1000, 100000); Sample: 75,283

1

Approximate Bayesian Computation

Step 1: Simulate a prior distribution.

Repeat this process tens of thousands of times for each model to
generate a prior!

Approximate Bayesian Computation

Step 2: Calculate summary statistics for each simulated dataset in

the prior (e.g., m, Fst).

Approximate Bayesian Computation

Step 3: Calculate the same summary statistics for your empirical
data.

14

Approximate Bayesian Computation

Step 4: Calculate the distance p(D, D;) between empirical and
simulated data, and keep simulated data within some distance of the
empirical data.

Approximate Bayesian Computation

Step 5: Calculate the approximate posterior probability of each
model.

16

Strengths of ABC

- It's very flexible!
- We can consider any model under which we can simulate data.

- We can carefully select summary statistics that we expect will help to
distinguish amongst models.

Weaknesses of ABC

- We have to summarize our data using summary statistics, causing
information loss. This is especially true when we have genomic-scale
data!

- Using too many summary statistics leads to a decrease in performance
(i.e, the curse of dimensionality).

- Considering too many models leads to a decrease in performance.

Supervised Machine Learning versus ABC

Approximate Bayesian Computation

Simulated
prior

% Sample
—_— 0 —— basedon ——
p(D, D) .
[l i Approximated
Simulated Posterior

summary
statistics (D,)

Simulations under

Empirical data and summary statistics (D)

some model.
Supervised Machine Learning
TRAINING
—_—
Di
— Di _ - Prediction
S — >
— U
Training data Feature Algorithm Model
with known vector
history

Simulations under
some model.

C 00—

Unlabeled data and features
19

Supervised Machine Learning versus ABC

- We are not as limited by the number of statistics we can use, meaning
we don't have as much information loss.

- In some cases, we can use data directly as input, avoiding any apriori
statistic selection.

- In practice, we can compare more models with greater accuracy.

20

Why do we use machine learning?

- We cannot always use full Likelihood or Bayesian approaches to
compare complex models or estimate parameters from our large
genomic datasets.

- Traditional likelihood-free approaches have limitations that are more
pronounced for large-scale genomic datasets.

- Supervised machine learning allows us to compare complex models
with improved computational effeciency while using our data more
effectively.

21

Overview of Supervised Machine
Learning Algorithms

Overview of Supervised Machine Learning Algorithms

Decision Trees

22

What is a decision tree?

Do you like dogs?

Don't get a dog.

Do you have time for a dog?

23

What is a decision tree?

root node —>» Do you like dogs?

intermediate

Do you have time for a dog?
node —>» Do you have e foradog

Don't get a dog.

leaf nodes

Don't get a dog.

24

How do we build decision trees?

Goal: Build a decision tree that can predict whether | will find a slug
at a particular sampling site.

Will | find a slug?
g # Log
yes no 2 yes
yes yes 2 yes
yes yes 4 yes
no yes 1 yes
yes no 0 no
no yes 1 no
no yes 2 no
no no 2 no

25

How do we build decision trees?

Will | find a slug?

Log
yes no 2 yes
yes yes 2 yes
yes yes 4 yes
no yes 1 yes
yes no 0 no
no yes 1 no
no yes 2 no
no no 2 no

Raining?

Yes, No

26

How do we build decision trees?

Will | find a slug?

8 # Log -
yes no 2 yes Ralnlng?

yes yes 2 yes

yes yes 4 yes

no yes 1 yes Yes No

yes no 0 no

no yes 1 no

no yes 2 no

no no 2 no [slug [noslug] [slug [noslug|

3 [[] 3

27

How do we build decision trees?

Will | find a slug?

yes no 2 yes Ralnlng7

yes yes 2 yes

yes yes 4 yes

no yes 1 yes Yes, No

yes no 0 no

no yes 1 no

no yes 2 no

o, o, 2 no [slug | no slug| | slug] no slug|

3 [1 [1] 3
GINI Index n
measure of node purity 2
0: perfectly pure GINI =1 — Z Di

1: elements randomly distributed i=1

28

How do we build decision trees?

Will | find a slug?

yes no 2 yes Ramlng7
yes yes 2 yes
yes yes 4 yes

no yes 1 yes Yes No
yes no 0 no

no yes 1 no

no yes 2 no

no no 2 no [slug [noslug] [slug [noslug|

3 [+ [T3
GINI Index
measure of node purity yes: GINI =1 - (3/4)*- (1/4)* = 0.375
0: perfectly pure no: GINI = 1-(1/4)*- (3/4)*=0.375
1: elements randomly distributed average = (4/8) x 0.375 + (4/8) x 0.375 = 0.375

29

How do we build decision trees?

Will | find a slug?

0.375 0.4667 0.4286

yes no 2 yes Ramlng7
yes yes 2 yes
yes yes 4 yes
no yes 1 yes Yes, No
yes no 0 no
no yes 1 no
no yes 2 no
no no 2 no [slug [noslug] [slug [noslug|
3 v J[r 3
GINI Index
measure of node purity yes: GINI =1 - (3/4)*- (1/4)* = 0.375
0: perfectly pure no: GINI = 1-(1/4)*- (3/4)*=0.375
1: elements randomly distributed average = (4/8) x 0.375 + (4/8) x 0.375 = 0.375

30

How do we build decision trees?

Will | find a slug?

Raining?

Log
yes no 2 yes
yes yes 2 yes
yes yes 4 yes
no yes 1 yes
yes no 0 no
no yes 1 no
no yes 2 no
no no 2 no

31

How do we build decision trees?

Will | find a slug?

Raining?

E A Yes No
yes no 2 yes
yes yes 2 yes
yes e 4 yes | #Logs > 1 | ’# Logs > 1.5‘
no yes 1 yes
yes no 0 no
no yes 1 no Yes No Yes No
no yes 2 no
no no 2

= =0 @@ (e

32

How do we build decision trees?

- We recursively split our training data using the features that perform
best.

- We stop when we meet some criterion (maximum depth, minimum
number of samples in leaf, minimum decrease in error metric).

- We can use decision trees for classification or regression.

- We can learn about which predictors drive classification from our
decision trees.

- Decision trees are prone to overfitting.

33

Random Forests

- To address this issue, we can use a collection of decision trees!

- We construct a Random Forest Classifier (or regressor) by doing the
following.

- For each iteration i
- Generate a bootstrapped dataset.
- Create a decision tree using the bootstrapped dataset, and only use a
random subset of variables when constructing each node.
- When classifying data, use all trees, and consider the class that
the most decision trees vote for to be the predicted class.
- This is called Bagging (bootstrapping + aggregating).

34

Raining? Will | find a slug? #Logs > 1

Yes No
Yes, No Stream?

- Ye N
| #Logs > 1 ‘ ‘# Logs > 1.5‘ < ° Stream Raining

Yes No Yes/\ ’ Ralnlng ‘ ‘ #Logs < 2 | /\
G es/}

35

Advantages of Random Forests

- Less prone to overfitting.

- We can estimate 'out-of-bag’ error rates very easily to assess power.

- For each element of the training data:

- Predict the element’s class using the decision trees constructed
without reference to that element.

- Calculate how often elements of each class are accurately
predicted.

36

Examples: delimitR

Goal: To delimit species while considering population-level

processes.

(<>

[Fx
e

[P
[P
|

[Fx
[n
N

[

37

Examples: delimitR

Goal: To delimit species while considering population-level

processes.
TRAINING
Di
—_— Di —_— —_— Best
[l S Demographic
S . Model
Training data Binned Site Algorithm Random
with known Frequency Forest
history Spectrum Classifier
\

Simulations under %
a set of demographic
dels in fastsi 2.
models in fastsimcoa Unlabeled data + bSFS

(Smith and Carstens, 2020, Evolution)

38

Examples: delimitR

- delimitR predicts the best demographic model using SNP data.

- delimitR can consider any model that can be defined in fastsimcoal2
(Excoffier et al., 2013).

- delimitR uses the SFS to summarize the data.

- delimitR achieves error rates < 5% for hundreds of models.

39

Examples: FILET

Goal: To classify genomic windows as introgressed or not, and to
determine the direction of introgression when it occurs.

TRAINING
_—

Training data
with known
history

el

Set of
summary
statistics

fe)
Algorithm

—_—

introgressed?

Extra
Trees
Classifier

Simulations under
a model of pulse
migration in msmove
(Geneva et al., 2013).

Unlabeled data + summary
statistics

(Schrider et al., 2018, PLoS Genetics)

40

Examples: FILET

Py

Sensitivity to introgression

0.10.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Ty

Figure 1 from Schrider et al,, 2018

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Mmo|} 2uab aAeY 0} pauidjul SUOIFRINWIS JO UOI}ORIY

Examples: FILET

FILET
P(introgression)

o

~

. 631207 G31191 RpS30 anncdz [ICprozF G4159
9 G31189 dly ICG156 G31195 Nepd rp72

c G12278 G5621 [ICG15695 G42322 KaiRIA ep2

@ Dhc93AB otX nd 70528.1A 1URIIE G16953
o G17278 [€G10830 G31200 Lrr CG34008
9 Rlip [Totz. G31199 Pi3K!

© RhoGAP93B ' |CG5697 [TotB

Q MvI alx [TotA

> G1727. 27

w ICG7079 [EmAtpalpha

Figure 4 from Schrider et al., 2018

42

Examples: FILET

- FILET predicts whether a genomic region has introgressed across
population or species boundaries.

- FILET uses a suite of hand-crafted summary statistics to summarize the
data.

- FILET achieves reasonable error rates that depend on the divergence
time and time of introgression.

43

Decision Trees and Random Forests

- Decision trees learn how to use features to split data in meaningful
ways, and then can be used to make predictions on unseen data.

- Random Forests are collections of decision trees.

- Decision-tree based classifiers are highly interpretable and outperform
traditional ABC in many cases.

I

Overview of Supervised Machine Learning Algorithms

Fully Connected Neural Networks (FCNNs)

45

What are neural networks?

input
layer

GJole

46

What are neural networks?

. ("
input output
layer layer

GJole
EEE

47

What are neural networks?

hidden
layers

output
layer

input
layer

GJole
OOO0OO
EEE

48

What are neural networks?

hidden
layers

output
layer

input
layer

OOO0OO
ECEE

GJole
OOO0OO

49

What are neural networks?

hidden
layers
(™ —_—
input output
layer layer

OOO0OO
EEE

50

What are neural networks?

hidden
layers
e ™ —_—
input output
layer layer

51

How do neural networks work?

hidden
layers

input
layer

GJole
OOO0OO

52

How do neural networks work?

hidden
layer 1

input
layer

GJole
OOO0OO

53

How do neural networks work?

hidden
layer 1

input
layer

Giele]
OOO0OO

54

How do neural networks work?

hidden
layer 1

input
layer

Gjofe]

55

How do neural networks work?

hidden
layer 1

= aOW0 + a1w1 + aZW2

= E aiwi
i

56

How do neural networks work?

hidden

layer 1
= E aiwi+b
[

57

How do neural networks work?

hidden
layer 1
= E a;w; +b
[

Sigmoid activation function

@]
<)
=
S

4
(<)

|
i

|
N
(@
o
~

58

What are activation functions?

Sigmoid RelU

o
2 v
.
3 o
< o

S 4 2 0 2 4 4 2 0 2 4
Softmax

59

How do neural networks work?

hidden
layer 1
= E a;w; +b
[

Sigmoid activation function

@]
<)
=
S

4
(<)

|
i

|
N
(@
o
~

60

How do neural networks work?

hidden
layers
e ™ —_—
input 3w output
layer 1b layer

61

How do neural networks work?

hidden
layers
~
SR ()
input 3w S w output
layer 1b 1b layer
/ 3w 5w
m, b b
3w 5w
@é b 1b
3w 5w
1b 1b
@é\ 3w 5w
— b b
\ J

62

How do neural networks work?

hidden 55 weights!
layers 13 biases!
s ~ 68 trainable parameters
(input \ v S output
layer 1b 1b layer
/ 3w 5w
m, b b
3w 5w
@é b b
3w 5w
1b 1b
@é\ 3w 5w
— b b
\ J

63

How do neural networks learn?

- We need to learn the weights and biases.
- To do this we use backpropogation.

- Backpropogation uses gradient descent (calculus) to find the values of
the weights and biases that minimize prediction error.

64

How do we train neural networks?

1. Initialize the weighs and biases of the network.
2. For each epoch i:

- Shuffle the training data and divide it into minibatches.
- For each minibatch j:

- Pass the minibatch through the neural network.
- Calculate the loss (i.e, some measure of prediction error.)
- Update weights and biases to improve prediction accuracy.

3. Evaluate prediction accuracy on an independent dataset.

65

How do we train neural networks?

- epochs: the number of training iterations
- minibatches: subsets of the training data used during training

- learning rate: controls how quickly weights and biases are updated

66

How do we build neural networks?

- We decide how to structure our input data.
- We decide what we want to output.

- We decide how many hidden layers to include, how many neurons to
include in each layer, and which activation functions to use.

- We decide how many epochs to use, how many mini-batches to use,
and select a learning rate.

- The number of hidden layers, the numbers of neurons, the choice of
activation functions, the numbers of epochs and mini-batches, and the
learning rate are all referred to as hyperparameters of our network, and
we usually try to optimize these.

67

How do we build evaluate neural networks?

- When training a neural network, we hold out some percentage of our
data as validation data.

- The validation data helps us to assess whether our model is only
memorizing the training data, or whether it will be able to generalize.

- Since we may use error on this validation set to manually (or
automatically) tune our hypterparameters, it is important to also hold
out some of our data as an independent test data set, which should
only be used to evaluate performance after all training, tuning, and
adjustments are complete!

68

Examples: evoNet

Goal: to estimate historical population sizes and detect selection.

TRAINING
[—
N L] — Demographic
L Model

S ith Parameters,

Training data Summary Algorithm Fully Selection

with known Statistics Connected Scenario

history Neural Network
| \
Simulations under a demographic model %

(bottleneck), and a selection scenario Unlabeled data + summary

(neural, hard sweep, soft sweep, balancing). statistics

(Sheehan and Song, 2016)

69

Examples: evoNet

Nl

N, popglation
sizes

Nj

s | selection

@

layer L-1
(hidden)

layer 2
(hidden)

statistics

Figure 6 from Sheehan and Song, 2016
70

Examples: evoNet

Called Class
True Class Neutral Hard Sweep Soft Sweep Balancing
Neutral 0.9995 0.0002 0.0003 0.0000
Hard Sweep 0.1434 0.8333 0.0032 0.0201
Soft Sweep 0.0096 0.0010 0.9891 0.0003
Balancing 0.0301 0.0356 0.0056 0.9287

doi:10.1371/journal.pebi. 1004845.t003

Table 3 from Sheehan and Song, 2016

71

Examples: evoNet

- evoNet predicts population sizes through time and a selection history.
- To do this, evoNet includes two rather different outputs!
- evoNet uses a large number of summary statistics.

- evoNet estimates selection class more easily than population sizes.

72

Examples: ml4ils

Goal: to estimate the frequency of concordant quartet topologies
from a set of alignments and gene trees.

shorter IBL = more discordance longer EBL = more discordance
due to ILS due to gene tree
estimation error

73

Examples: ml4ils

Goal: to estimate the frequency of concordant topologies from a set
of alignments and gene trees.

Concordant Gene Trees Concordant Gene Trees (Inferred)

0.200 10

0.175
08

0.150

0.125
0.6

@ 0.100
0.075 04

0.050
0.2

0.025
0.000 -

02 04 06 08 10 12

EBL

Figure 2 from Rosenzweig et al., 2022

74

Examples: ml4ils

Goal: to estimate the frequency of concordant topologies from a set

of alighments and gene trees.

TRAINING
[—
Di
—H—
]
Training data Summary
with known Statistics
history

Algorithm

Fully
Connected
Neural Network

Simulations under varying
internal and external
branch lengths

—

|

Estimate
of the
frequency
of
concordant
trees (p)

Unlabeled data + summary

statistics

(Rosenzweig et al., 2022)

Summary statistics: sCFs, patristic distances, etc.

75

Examples: ml4ils

Goal: to estimate the frequency of concordant topologies.

p—p

0.200 0.6
0.175 -
0.4
0.150 -
0.2
0.125 -
@ 0.100 I 0.0
0.075 1
F-0.2
0.050 -
— -0.4
0.025 - _ !
0.000 ~ —— . . . -0.6
0.2 0.4 0.6 0.8 10
EBL

Figure 5 from Rosenzweig et al., 2022 7

Fully Connected Neural Networks

- FCNNs are composed of a set of dependent non-linear functions.
- FCNNs learn weights and biases that minimize prediction error.
- We can adjust hyperparameters to build FCNNs that perform well.

- FCNNs rely on some set of features (i.e., summary statistics) to learn the
connection between input and output.

- We saw examples using an FCNN to detect selection, estimate
demographic parameters, and estimate the probability of concordance!
(And there are many morell)

77

Overview of Supervised Machine Learning Algorithms

Convolutional Neural Networks (CNNs)

78

What if | want to classify images?

input layer

N

200 pixels x 150 pixels =
30000 inputs!

a!

azaaon

=1

hidden layer

output layer

1. Scalability!

79

What if | want to classify images?

input layer
N
hidden layer
200 pixels x 150 pixels =

30000 inputs! 30,000 w
= 1b

output layer

30,000 w

30,000 w

30,000 w

1. Scalability!
2. Shifts!

30,000 w

azaaon

80

What if | want to classify images?

input layer

J

200 pixels x 150 pixels =
30000 inputs!

a!

azaaon

=1

hidden layer

output layer

1. Scalability!
2. Shifts!

81

What if | want to classify images?

input layer

N

hidden layer
200 pixels x 150 pixels =
30000 inputs!

=

a

30,000 w
1b

output layer

5 30,000w

30,000 w

1. Scalability!
2. Shifts!
3. Correlations!

30,000 w

30,000 w

|

azaaon

82

What if | want to classify images?

Convolutional Neural Networks (CNNs) are designed to perform well
on input images by improving on fully connected layers in several
ways, including:

1. Scalable

2. Robust to shifts

3. Take advantages of correlations between pixels

83

How do CNNs work?

Convolutional
Layer

Pooling
Layer

Fully
Connected
Neural
Network

84

How do CNNs work?

inputimage filter (i.e., kernel)

85

How do CNNs work?

inputimage filter (i.e., kernel)

86

How do CNNs work?

inputimage filter (i.e., kernel)

1. Overlay the filter onto the image.
2. Calculate the dot product.
1x1 + 0x0 + 0x0 +
0xT1+ 1x1 4+ 0x0 +
0x1+0x0+ 1x1=3

87

How do CNNs work?

inputimage filter (i.e., kernel)

£

1. Overlay the filter onto the image.
2. Calculate the dot product.
1x1 + 0x0 + 0x0 +
0xT1+ 1x1 4+ 0x0 +
0x1+0x0+ 1x1=3
3. Add the bias term!

88

How do CNNs work?

input image filter (i.e., kernel) Feature Map

£

1. Overlay the filter onto the image.
2. Calculate the dot product.
1x1 + 0x0 + 0x0 +
0xT1+ 1x1 4+ 0x0 +
0x1+0x0+ 1x1=3
3. Add the bias term!
4. Enter into the feature map.

89

How do CNNs work?

input image filter (i.e., kernel) Feature Map

£

1. Overlay the filter onto the image.
2. Calculate the dot product.
1x1 + 0x0 + 0x0 +
0xT1+ 1x1 4+ 0x0 +
0x1+0x0+ 1x1=3
3. Add the bias term!
4. Enter into the feature map.

90

How do CNNs work?

input image filter (i.e., kernel) Feature Map

£

1. Overlay the filter onto the image.
2. Calculate the dot product.
1x1 + 0x0 + 0x0 +
0xT1+ 1x1 4+ 0x0 +
0x1+0x0+ 1x1=3
3. Add the bias term!
4. Enter into the feature map.
5. Shift the filter, and repeat steps 2-4.
(the amount of shift = the stride)

9

How do CNNs work?

input image filter (i.e., kernel) Feature Map

210

£

1. Overlay the filter onto the image.

2. Calculate the dot product.

3. Add the bias term!

4. Enter into the feature map.

5. Shift the filter, and repeat steps 2-4.
(the amount of shift = the stride)

92

How do CNNs work?

input image filter (i.e., kernel) Feature Map

210

£

1. Overlay the filter onto the image.

2. Calculate the dot product.

3. Add the bias term!

4. Enter into the feature map.

5. Shift the filter, and repeat steps 2-4.
(the amount of shift = the stride)

93

How do CNNs work?

input image filter (i.e., kernel) Feature Map

21011

£

1. Overlay the filter onto the image.

2. Calculate the dot product.

3. Add the bias term!

4. Enter into the feature map.

5. Shift the filter, and repeat steps 2-4.
(the amount of shift = the stride)

9%

How do CNNs work?

input image filter (i.e., kernel) Feature Map

21011

£

1. Overlay the filter onto the image.

2. Calculate the dot product.

3. Add the bias term!

4. Enter into the feature map.

5. Shift the filter, and repeat steps 2-4.
(the amount of shift = the stride)

95

How do CNNs work?

inputimage filter (i.e., kernel) Feature Map
21011
o(1(0]0
1ol -1lo0]1
O|-11-1|0

1. Overlay the filter onto the image.

2. Calculate the dot product.

3. Add the bias term!

4. Enter into the feature map.

5. Shift the filter, and repeat steps 2-4.
(the amount of shift = the stride)

96

How do CNNs work?

inputimage filter (i.e., kernel) Feature Map
20011
1 nn o[1]0]o0
n1 +'1 0|-1/0]1
nn 1 0|-1]-1]0

Ve

activation function

97

How do CNNs work?

inputimage filter (i.e., kernel) Feature Map
0|-1]1
110/0
110 |1
) -1]o0

activation function

RelLU

2 3 4 5

1

4 2 0 2 4

98

How do CNNs work?

Activated Feature Map
2[00 (1
0|1/010
0001
0 0

99

How do CNNs work?

Activated Feature Map Max Pooling Filter
21001
oj(1(0]|0
00|01
0 0|0

100

How do CNNs work?

Activated Feature Map Max Pooling Filter
2001
0|1(0|0
0 011
0jo0/|0

101

How do CNNs work?

Activated Feature Map Max Pooling Filter Pooled Feature Map
2001 2
0|1(0|0
0 011
0|00

102

How do CNNs work?

Activated Feature Map Max Pooling Filter Pooled Feature Map
2(0(0 |1 2|1
0O(1(0|0
00| 09\1
0 ooV

103

How do CNNs work?

Activated Feature Map Max Pooling Filter Pooled Feature Map
21001 2|1
oj(1(0]|0 0
0|0[0]1
oot

104

How do CNNs work?

Activated Feature Map Max Pooling Filter Pooled Feature Map
21001 2|1
oj(1(0]|0 01
01001
0 0|04

105

How do CNNs work?

Activated Feature Map Max Pooling Filter Pooled Feature Map
2[00 (1 2 (1
0|1/010 0|1
0[0]|0|1
0 00

Flatten

2

1

0

1

106

How do CNNs work?

Activated Feature Map

Max Pooling Filter

20|01

oO|1/010

0O[0|0 |1

0 0|0
Flatten
2
1
0
1

Pooled Feature Map

2

1

1

0

Fully
Convolutional
Neural
Network

107

How do CNNs work?

- Input: Image
- Apply Convolutional Filter

1. Overlay filter on input image.
2. Calculate dot product.

3. Add bias term.

4. Populate feature map.

5. Slide filter, and repeat.

- Activate Feature Map.
- Perform Max Pooling.
- Flatten into vector.

- Feed into fully connected neural network.

108

How do CNNs work?

- learnable parameters: weights and biases (weights for each cell of
each convolutional filter)

- hyperparameters: the number of convolutional layers, the activaiton
functions, the number of filters, the size of the filters, the stride size,
the type of pooling, the FCNN hyperparameters!

109

How do we use CNNs in population genetics?

The Unreasonable Effectiveness of Convolutional Neural
Networks in Population Genetic Inference

Lex Flagel," Yaniv Brandvain,” and Daniel R. Schrider**

- We can treat alignments as images!

- This allows us to avoid a priori summarization of our data using
features.

- Instead, our network learns the features directly.

110

How do we use CNNs in population genetics?

Chromosomes

0 20 40 0 20 40
Segregating Sites
Figure 2 from Flagel et al., 2019

m

Examples: Flagel

Goal: to predict whether a genomic window is introgressed.

TRAINING
columns = polymorphisms
rows = chromosomes
group chromsomes by spec. .
padding with 0s - ——t+— introgressed?
transposed
Trainingdata ~ Alignment Algorithm 1D
with known Image CNN
history

Simulations under a %
model of pulse migration

in msmove (Geneva et al., 2013). Unlabeled data

(Flagel et al., 2018)

112

Examples: Flagel

o jusl
A
10 § 10 §
09 o 09 o
No introgression 0.8 E No introgression 0.8 'z*
n 07 2 “ 07 3
k] 06 8 m 06 g
o sechtosim 93.48% 05 8 O sechtosim 05 8
2 04 2 3 04 2
= o C @
= 03 8 F 03 &
02 g 02 @
sim-to-sech | 23.00% 3 sim-to-sech | 24.21% 0.08% [EENAL - 2
01 o 01 a
0.0 © 00 8
5 &) & 5 - o
A 8 & S g
& & & « & o & &

& & B & o &

«© ®
Predicted class Predicted class

Figure 4 from Flagel et al,, 2019

113

Examples: Suvurov

Goal: to infer the unrooted quartet topology.

TRAINING —
=
g <o'umns = polymorphisms [N E—— Best
rows = chromsomes Quartet
__J AT S ith A Topology
Training data Alignment Algorithm Convolutional
with known Image Neural Network|
history
\

Simulations under varying

topologies, branch lengths, Unlabeled data
and model parameters.

(Suvorov et al., 2020)

114

Examples: Suvurov

o
0.892
&] @ gapped
ungapped ¢
)
m_ —
=]
>
o
g =
@ 3
=]
3 0773 07T
0.768
2 0.763 0.765 0.765 0.765 @
0.749
0.745
)
~
=1
0.701 0.704
o
P_ —
o

T T T T T | T T T T T T
oS SIS A
¢ & O Q@& y > e éﬂq & &
D & & 03‘\ 03\\

Figure 2 from Suvorov et al,, 2020
115

Examples: Suvurov

a) Farris zone b) Twisted Farris zone c) Felsenstein zone d) Short internal branch
<
o o © (t)
¥ ¥ ? ¥
£ < s &
1] [as] [aa] =t
1]

Bs Bs p—— B Bs
0.0 05 10
3 1 2963 0949 — 0955 o945 ~ 0723 e
== 0872 = o | o879 0892 s 7 < s g 0627
3 < s <<= 1 < s <
g | - 2 0.484 . 0558 0.565
£3 = < - 0544
8 4 £ 1 0308 © o os0s <>®
< s Q4 < =
o | 057 . 0575 S] o =
° <> © = o <
T T T T T o T T T T T] T T T T T o T T T T T
MP NJ ML BI CNN MP NJ ML BI CNN MP NJ ML BI CNN MP NJ ML BI CNN

Figure 4 from Suvorov et al,, 2020

116

Convolutional Neural Networks

- Take images directly as input!
- Bypass the need to summarize the data!

- Have even more hyperparameters than a FCNN!

117

