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A motivating example for GNNs

Figures 1, 2 from Voznica et al., 2022
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A motivating example for GNNs

• How could you use machine learning to estimate these parameters?

• Available data:

1. sequence data
2. phylogeny
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A motivating example for GNNs

Summary statistics: 26 measures of branch lengths, 8 measures of
tree topology, 9 measures of the number of lineages through time,
and 40 coordinates representing the lineage-through-time (LTT) plot.
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A motivating example for GNNs

Figure 3 from Voznica et al., 2022
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A motivating example for GNNs

Compact Bijective Ladderized Vector encoding

Figure 2 from Voznica et al., 2022
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A motivating example for GNNs
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A motivating example for GNNs

Figure 3 from Voznica et al., 2022
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A motivating example for GNNs

Figure 3 from Voznica et al., 2022
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A motivating example for GNNs

A similar goal: estimating speciaton 𝜆 and extinction 𝜇 rates from a
phylogeny (Lajaaiti, et al., 2023).

Figure 3 from Latjaaiti et al., 2023
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A motivating example for GNNs

Figure 1 from Latjaaiti et al., 2023
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A motivating example for GNNs

Figure 1 from Latjaaiti et al., 2023
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A motivating example for GNNs

Figure 3 from Latjaaiti et al., 2023
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Graphical Neural Networks

• GNNs take graphs as input!

• GNNs preserve important aspects of graph architecture.

• Even though they didn’t work well for this problem, I’m very exited
about how GNNs might be used in phylogenetics.
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What is a RNN?
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What is a RNN?

• Can consider different amounts of sequential data.

• Takes advantage of correlations between sequential data using
feedback loops.
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Why might we use a RNN in population genetics?

• Some properties of the genome are spatially autocorrelated.

• For example, we might expect that recombination rates are more
similar between nearby regions than between dispersed regions of the
genome.

• Adrion et al., (2020) were motivated by this to develop ReLERNN, a RNN
for predicting recombination rate across the genome.

• ReLERNN outperformed the CNN developed by Flagel et al. (2018) to
estimate recombination rates for genomic windows.
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An example: ReLERNN

140



An example: ReLERNN

Figure 2 from Adrion et al., 2020
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What is a Generative Adversarial Network?
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How have GANs been used in population genetics?
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Why might we need a GAN for phylogenetics?

Traditional Machine Learning approaches require that simulations
are conducted under all relevant models prior to training.
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Why might we need a GAN for phylogenetics?

Five taxa: Fifteen unrooted trees.
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Why might we need a GAN for phylogenetics?

In phylogenetics, the model space is (at a mininum) the tree space.

The number of possible trees becomes prohibitively large even with
moderate numbers of taxa.

TAXA TREES
3 1
4 3
5 15
6 105
7 954
8 10,395
9 135,135
10 2,027,025
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phyloGAN
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Challenges with GANs

• GANs can be very difficult to train stably.

• GANs rely on similarities between empirical and generated data, which
can be a problem when our models are not well-specified.
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Random Forests

• Random Forest Classifiers (and Regressors) use collections of decision
trees trained for the task at hand.

• Hyperparameters include the number of trees, the number of features
considered when splitting a node, and parameters controlling the size
of each decision tree.

• Random Forests rely on hand-crafted summary statistics.

• Examples using RF include delimitR and FILET.
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Fully Connected Neural Networks

• Fully connected neural networks consist of dependent non-linear
functions.

• Layers contain nodes, which are connected with weights and associated
with biases. These weights and biases are the trainable parameters of
the network.

• Hyperparameters include the number of hidden layers, the number of
neurons per layer, the activation functions and the batch sizes and
number of epochs used in training.

• FCNNs usually rely on hand-crafted summary statistics.

• Examples include the evoNET network introduced by Sheehan and Song
(2016) and ml4ils (Rosenzweig et al., 2022).
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Convolutional Neural Networks

• CNNs are very similar to FCNNs, but at the beginning we perform a
series of convolutions, which allows us to process image data in a
meaningful and efficient way.

• Trainable parameters include the weights and biases associated with
the filters (plus weights and biases associated with the FCNN).

• In addition to the hyperparameters of the FCNN, hyperparameters
include the number of convolutional layers, the size and shape of
filters, the number of filters, the stride, and the type of pooling to use.

• CNNs can directly process images of alignment, bypassing the need to
calculate summary statistics.

• We discussed an approach for detecting introgressed genomic windows
(Flagel et al., 2018), and an approach to infer quartet trees (Suvorov et
al., 2020).

154



Graphical Neural Networks

• GNNs are similar to FCNNs in many ways, but the input is a graph!

• We perform convolutions on the graph in a way that preserves aspects
of graph structure.

• GNNs are an obvious architecture for analyzing phylogenies, but it may
take some work to figure out how to best use them for this purpose.
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Recurrent Neural Networks

• Recurrent Neural Networks extend FCNNs to handle sequential input
data.

• The hyperparameters are similar to those of a FCNN.

• We discussed ReLERNN, a method for estimating recombination rates
(Adrion et al., 2020).
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Generative Adversarial Networks

• GANs consist of a generator, which tries to produce a realistic data, and
a discriminator, which tries to distinguish generated from real data.

• By using an evolutionary model and parameters as the generator, we
can make evolutionary inferences.

• Examples include pg-GAN (Wang et al., 2021) and phyloGAN (Smith and
Hahn, 2022).
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How do I avoid overfitting?

• Overfitting occurs when the model gives accurate predictions for the
training data, but not new data.

• We can attempt to avoid overfitting using several approaches:

RF: don’t let decision trees get too large NN: dropout layers NN: use
regularization NN: use early stopping NN: reduce model complexity

1.2.3.4.5.• To ensure you recognize overfitting, be sure to keep an independent
test set!
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Overfitting: Random Forests
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Overfitting: Random Forests

161



How do I avoid overfitting?

• Overfitting occurs when the model gives accurate predictions for the
training data, but not new data.

• We can attempt to avoid overfitting using several approaches:

1. RF: don’t let decision trees get too large

2. NN: dropout layers
3. NN: use regularization
4. NN: use early stopping
5. NN: reduce model complexity

• To ensure you recognize overfitting, be sure to keep an independent
test set!
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Overfitting: Neural Networks
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Overfitting: Neural Networks
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How do I avoid overfitting?

• Overfitting occurs when the model gives accurate predictions for the
training data, but not new data.

• We can attempt to avoid overfitting using several approaches:

1. RF: don’t let decision trees get too large
2. NN: dropout layers

3. NN: use regularization
4. NN: use early stopping
5. NN: reduce model complexity

• To ensure you recognize overfitting, be sure to keep an independent
test set!
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How do I avoid overfitting?

• Overfitting occurs when the model gives accurate predictions for the
training data, but not new data.

• We can attempt to avoid overfitting using several approaches:

1. RF: don’t let decision trees get too large
2. NN: dropout layers
3. NN: use regularization (e.g., L1 regularization)

4. NN: use early stopping
5. NN: reduce model complexity

• To ensure you recognize overfitting, be sure to keep an independent
test set!
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3. NN: use regularization (e.g., L1 regularization)
4. NN: use early stopping
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How do I avoid overfitting?

• Overfitting occurs when the model gives accurate predictions for the
training data, but not new data.

• We can attempt to avoid overfitting using several approaches:

1. RF: don’t let decision trees get too large
2. NN: dropout layers
3. NN: use regularization (e.g., L1 regularization)
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How do I avoid overfitting?

• Overfitting occurs when the model gives accurate predictions for the
training data, but not new data.

• We can attempt to avoid overfitting using several approaches:

1. RF: don’t let decision trees get too large
2. NN: dropout layers
3. NN: use regularization (e.g., L1 regularization)
4. NN: use early stopping
5. NN: reduce model complexity

• To ensure you recognize overfitting, be sure to keep an independent
test set!
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How do I choose my hyperparameters

Hyperparameters can be optimized using several approaches:

1. Manual optimization

2. Grid search

3. Random search
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Simulation Misspecification
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Simulation Misspecification

What if our simulations aren’t realistic?
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Simulation Misspecification
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Domain Shifts

Domain shifts occur when training data and test data arise from
different distributions.

Domain adaptation aims to build networks that perform well when
the test data comes from a different distribution than the training
data.
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Domain Shifts
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Domain Adaptation
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Domain Adaptation
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Domain Adaptation
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Domain Adaptation

Mo and Siepel (2023) used domain adaptation.
Goal: to estimate the selection coefficient
Misspecification: Background Selection
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The Black Box

Can we understand how features are driving predictions?
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Variable Importance
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Variable Importance in Random Forests
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Variable Importance in Random Forests

Variable importance from Schrider et al., 2018 186



Variable Importance in Neural Networks

Permutation testing!

• For each variable i:

1. Randomly permute the values of the variable across the test
datasets.

2. Apply the neural network.
3. Measure the increase in prediction error relative to the baseline.
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Variable Importance in Neural Networks

Figure 5 from Sheehan and Song, 2016
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Does this really solve the ”Black Box” problem?
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Does this really solve the ”Black Box” problem?

• Selection can mislead inferences of migration and population
expansion.

• Traditional methods do not consider selection.

• I can build a machine learning algorithm that infers migration rates or
population size changes through time!
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Does this really solve the ”Black Box” problem?

• That machine learning approach may be extremely effective on
simulated data.

• It will give me an answer on my real data!

• BUT, it’s important to carefully consider other processes that could
produce the results, whether my model may be overfit to my simulated
data, and whether my results make sense in the light of other analyses!
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How and when should I use
Machine Learning?



How and when to use machine learning

1. Can I achieve my goal using a full Likelihood or Bayesian approach?

2. What do I want to predict (i.e., what would the output of my network
look like)?

3. What kind of data do I have, and how can I best structure that data to
answer the task at hand?

4. What processes do I need to account for when generating my training
data, and which simulator can best accomplish this task?

5. Which process am I ignoring that might impact inference?

6. What computational resources can I use?
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Useful Tools



A (non-exhaustive) list of useful simulators

1. msprime (Baumdicker et al., 2022): integrates easily into python
workflows

2. Sim-Phy (Mallo et al., 2015): great for simulating gene duplication and
loss

3. SLiM (Haller and Messer, 2019): forward-in-time simulations with
selection

4. Ali-Sim (Ly-Trong et al., 2022): great for phylogenetics
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Implementing Machine Learning workflows

1. tensorflow

2. Sci-kit learn

3. PyTorch
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Jupyter Notebook Example


