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Disclaimer: This is a non-exhaustive list of papers I referenced and/or like that use machine 
learning (or discuss machine learning) in population and phylogenetics. There are many, many 
more papers on these topics. The summaries are very vague and short, and are only meant to help 
you identify papers that might be of interest to you. Several of these papers are preprints, 
meaning they have not gone through peer review. 

 
1. Reviews 
 
Schrider, D.R. and Kern, A.D., 2018. Supervised machine learning for population genetics: a 

new paradigm. Trends in Genetics, 34(4), pp.301-312. doi: 
https://doi.org/10.1016/j.tig.2017.12.005 

  
 Summary: This paper offers a nice overview of supervised machine learning approaches 

and discusses some of the earliest applications of these approaches in population 
genetics. 

 
Korfmann, K., Gaggiotti, O.E. and Fumagalli, M., 2023. Deep learning in population genetics. 

Genome Biology and Evolution, 15(2), p.evad008. doi: 
https://doi.org/10.1093/gbe/evad008  

 
 Summary: This is a very recent review of deep learning approaches in population genetics 

and includes nice discussions of current challenges and future directions. 
 
Fountain‐Jones, N.M., Smith, M.L. and Austerlitz, F., 2021. Machine learning in molecular 

ecology. Molecular Ecology Resources, 21(8), pp.2589-2597. doi: 
https://doi.org/10.1111/1755-0998.13532 

 
 Summary: This paper is an introduction to a special issue in Machine Learning in 

Molecular Ecology Resources and should offer a nice road-map to some of the papers in 
that special issue. 

 
 
2. Population Genetics and Phylogeography 
 
2.1. Decision tree approaches 
 
Smith, M.L. and Carstens, B.C., 2020. Process‐based species delimitation leads to identification 

of more biologically relevant species. Evolution, 74(2), pp.216-229. doi: 
https://doi.org/10.1111/evo.13878 

 

https://doi.org/10.1016/j.tig.2017.12.005
https://doi.org/10.1093/gbe/evad008
https://doi.org/10.1111/1755-0998.13532
https://doi.org/10.1111/evo.13878


Summary: This paper introduces delimitR. delimitR uses Random Forests and the Site 
Frequency Spectrum to compare models that differ both in the number of populations and 
the presence or absence of gene flow between populations. 

 
Schrider, D.R., Ayroles, J., Matute, D.R. and Kern, A.D., 2018. Supervised machine learning 

reveals introgressed loci in the genomes of Drosophila simulans and D. sechellia. PLoS 
Genetics, 14(4), p.e1007341. doi: https://doi.org/10.1371/journal.pgen.1007341 

 
 Summary: This paper uses Extra Trees classifiers and a set of hand-crafted summary 

statistics to classify genomic windows as introgressed between two closely-related 
populations or species. 

 
2.2. Fully Connected Neural Networks 
 
Sheehan, S. and Song, Y.S., 2016. Deep learning for population genetic inference. PLoS 

Computational Biology, 12(3), p.e1004845. doi: 
https://doi.org/10.1371/journal.pcbi.1004845 

 
 Summary: This paper uses a deep neural network and hand-crafted summary statistics to 

infer population sizes through time and detect selection. 
 
2.3. Convolutional Neural Networks 
 
Flagel, L., Brandvain, Y. and Schrider, D.R., 2019. The unreasonable effectiveness of 

convolutional neural networks in population genetic inference. Molecular Biology and 
Evolution, 36(2), pp.220-238. doi: https://doi.org/10.1093/molbev/msy224 

 
 Summary: This paper introduced Convolutional Neural Networks (CNNs) as a potentially 

useful supervised machine learning approach in population genetics. They offer an 
overview of CNNs and apply them to several problems in population genetics. 

 
Fonseca, E.M., Colli, G.R., Werneck, F.P. and Carstens, B.C., 2021. Phylogeographic model 

selection using convolutional neural networks. Molecular Ecology Resources, 21(8), 
pp.2661-2675. doi: https://doi.org/10.1111/1755-0998.13427 

 
 Summary: This paper uses CNNs to compare phylogeographic models. 
 
 
Torada, L., Lorenzon, L., Beddis, A., Isildak, U., Pattini, L., Mathieson, S. and Fumagalli, M., 

2019. ImaGene: a convolutional neural network to quantify natural selection from 
genomic data. BMC bioinformatics, 20(337), pp.1-12. doi: 
https://doi.org/10.1186/s12859-019-2927-x 

 
 Summary: This paper uses a CNN to detect selection. 
 
 

https://doi.org/10.1371/journal.pgen.1007341
https://doi.org/10.1371/journal.pcbi.1004845
https://doi.org/10.1093/molbev/msy224
https://doi.org/10.1111/1755-0998.13427
https://doi.org/10.1186/s12859-019-2927-x


2.4. Recurrent Neural Networks 
 
Adrion, J.R., Galloway, J.G. and Kern, A.D., 2020. Predicting the landscape of recombination 

using deep learning. Molecular biology and evolution, 37(6), pp.1790-1808. doi: 
https://doi.org/10.1093/molbev/msaa038 

 
 Summary: This paper uses Recurrent Neural Networks to estimate recombination rates 

across the genome. 
 
Hejase, H.A., Mo, Z., Campagna, L. and Siepel, A., 2022. A deep-learning approach for 

inference of selective sweeps from the ancestral recombination graph. Molecular Biology 
and Evolution, 39(1), p.msab332. doi: https://doi.org/10.1093/molbev/msab332 

 
 Summary: This paper uses Recurrent Neural Networks to detect selection (and estimate 

selection coefficients) from the ancestral recombination graph. 
 
2.5. Generative Models 
 
Wang, Z., Wang, J., Kourakos, M., Hoang, N., Lee, H.H., Mathieson, I. and Mathieson, S., 2021. 

Automatic inference of demographic parameters using generative adversarial networks. 
Molecular Ecology Resources, 21(8), pp.2689-2705. doi: https://doi.org/10.1111/1755-
0998.13386 

 
 Summary: This paper implements a GAN to infer demographic parameters under several 

models. This allows for a heuristic exploration of parameter space. 
 
2.6. Image Segmentation 
 
Ray, D., Flagel L., and Schrider, D.R. 2023. IntroUNET: identifying introgressed alleles via 

semantic segmentation. bioRxiv. doi: https://doi.org/10.1101/2023.02.07.527435 
 
 Summary: This paper uses image segmentation to identify introgressed haplotypes. 
 
 
2.7. Domain Adaptation 
 
Mo, Z. and Siepel, A., 2023. Domain-adaptive neural networks improve supervised machine 

learning based on simulated population genetic data. bioRxiv. doi: 
https://doi.org/10.1101/2023.03.01.529396 

 
 Summary: This paper implements domain-adaptive neural networks in ReLERNN 

(Adrion et al., 2020) and SIA (Hejase et al., 2022). They are able to design networks that 
are more robust to simulation misspecification by implementing a gradient reversal layer. 

 
 
 

https://doi.org/10.1093/molbev/msaa038
https://doi.org/10.1093/molbev/msab332
https://doi.org/10.1111/1755-0998.13386
https://doi.org/10.1111/1755-0998.13386
https://doi.org/10.1101/2023.02.07.527435
https://doi.org/10.1101/2023.03.01.529396


3. Phylogenetics 
 
3.1. Inferring tree topologies (or concordance) 
 
Suvorov, A., Hochuli, J. and Schrider, D.R., 2020. Accurate inference of tree topologies from 

multiple sequence alignments using deep learning. Systematic biology, 69(2), pp.221-233. 
doi: https://doi.org/10.1093/sysbio/syz060 

 
 Summary: This paper uses a Convolutional Neural Network to infer quartet topologies 

from sequence alignments. 
 
Zou, Z., Zhang, H., Guan, Y. and Zhang, J., 2020. Deep residual neural networks resolve quartet 

molecular phylogenies. Molecular Biology and Evolution, 37(5), pp.1495-1507. doi: 
https://doi.org/10.1093/molbev/msz307  

 
 Summary: This paper implements a similar approach to Suvorov et al., (2020) to infer 

quartet topologies from sequence alignments. 
 
Solis-Lemus, C., Yang, S. and Zepeda-Nunez, L., 2022. Accurate phylogenetic inference with a 

symmetry-preserving neural network model. arXiv preprint arXiv:2201.04663. doi: 
https://doi.org/10.48550/arXiv.2201.04663 

 
 Summary: This paper improves upon the approaches of Suvorov and Zou to infer quartet 

topologies from sequence alignments. 
 
Zaharias, P., Grosshauser, M. and Warnow, T., 2022. Re-evaluating deep neural networks for 

phylogeny estimation: the issue of taxon sampling. Journal of Computational Biology, 
29(1), pp.74-89. doi: https://doi.org/10.1089/cmb.2021.0383 

 
 Summary: This paper evaluates the effectiveness of the approaches introduced by Zou et 

al. (2020) and Suvorov et al. (2020) and suggest that the limitation to inferring quartet 
topologies prevents these methods from being competitive. 

 
Smith, M.L. and Hahn, M.W., 2022. Phylogenetic inference using Generative Adversarial 

Networks. bioRxiv. doi: https://doi.org/10.1101/2022.12.09.519505 
 
 Summary: This paper implements a Generative Adversarial Network (GAN) to 

heuristically explore tree space and infer topologies.  
 
Rosenzweig, B., Kern, A. and Hahn, M., 2022. Accurate Detection of Incomplete Lineage 

Sorting via Supervised Machine Learning. bioRxiv. doi: 
https://doi.org/10.1101/2022.11.09.515828 

 
 Summary: This paper implements several networks, including a Fully Connected Neural 

Network, to infer the proportion of concordant gene trees at a branch of interest. This 
facilitates correcting for gene tree estimation error when external branch lengths are long.   

https://doi.org/10.1093/sysbio/syz060
https://doi.org/10.1093/molbev/msz307
https://doi.org/10.48550/arXiv.2201.04663
https://doi.org/10.1089/cmb.2021.0383
https://doi.org/10.1101/2022.12.09.519505
https://doi.org/10.1101/2022.11.09.515828


 
3.2. Inferring branch lengths 
 
Suvorov, A. and Schrider, D.R., 2022. Reliable estimation of tree branch lengths using deep 

neural networks. bioRxiv. doi: https://doi.org/10.1101/2022.11.07.515518  
 
 Summary: This paper uses a CNN to infer branch lengths for a quartet tree. 
 
3.3. Inferring phylodynamic and macroevolutionary parameters 
 
Voznica, J., Zhukova, A., Boskova, V., Saulnier, E., Lemoine, F., Moslonka-Lefebvre, M. and 

Gascuel, O., 2022. Deep learning from phylogenies to uncover the epidemiological 
dynamics of outbreaks. Nature Communications, 13(1), p.3896. doi: 
https://doi.org/10.1038/s41467-022-31511-0 

 
 Summary: This paper introduces a clever encoding of gene tree topologies that enables 

the use of CNNs on gene tree inputs. They use this and other approaches to estimate 
parameters of birth-death models.  

 
Lambert, S., Voznica, J. and Morlon, H., 2022. Deep Learning from Phylogenies for 

Diversification Analyses. bioRxiv. doi: https://doi.org/10.1101/2022.09.27.509667 
 
 Summary: This paper applies approaches similar to those of Voznica et al., (2022) to 

estimate speciation and extinction rates. 
 
Lajaaiti, I., Lambert, S., Voznica, J., Morlon, H. and Hartig, F., 2023. A Comparison of Deep 

Learning Architectures for Inferring Parameters of Diversification Models from Extant 
Phylogenies. bioRxiv. doi: https://doi.org/10.1101/2023.03.03.530992 

 
Summary: This paper compares several approaches, including Graphical Neural 
Networks, to estimate speciation and extinction rates. 

 
Thompson, A., Liebeskind, B., Scully, E.J. and Landis, M., 2023. Deep learning approaches to 

viral phylogeography are fast and as robust as likelihood methods to model 
misspecification. bioRxiv. doi: https://doi.org/10.1101/2023.02.08.527714 

 
 Summary: They compare likelihood and machine learning methods to estimate 

parameters of birth-death models when there is model misspecification. 
 

https://doi.org/10.1101/2022.11.07.515518
https://doi.org/10.1038/s41467-022-31511-0
https://doi.org/10.1101/2022.09.27.509667
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https://doi.org/10.1101/2023.02.08.527714

