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1 Introduction

Methods for estimating species trees can be divided into several classes, as described in Chapter 1.
The advantages and disadvantages of each class of methods are widely appreciated. For example,
summary methods are known to be computationally efficient, often requiring only seconds or min-
utes of computation once gene trees have been estimated for each of the individual loci. However,
these methods fail to account for uncertainty in the estimated gene trees, and thus their perfor-
mance is dependent on the quality of the gene tree estimates used as input. On the other hand,
Bayesian co-estimation methods are based on probabilistic models linking the observed sequence
data directly to the species tree and associated parameters, typically by explicitly incorporating
the multispecies coalescent (MSC) model. These have the advantage of being fully model-based,
thus enabling estimation of associated model parameters. However, due to the complexity of the
underlying models, co-estimation methods typically rely on Markov chain Monte Carlo (MCMC)
methods for statistical inference, and thus require extensive, and sometimes prohibitive, computa-
tion in order to carry out inference.

An alternative to summary methods and MCMC-based co-estimation methods are methods
that utilize site pattern frequencies as input to directly estimate the species tree under the MSC. In
this chapter, we describe two such methods. The first, SVDQuartets, is a method for estimation of
the species tree topology that does not rely on likelihood computation for estimation, thus enabling
coalescent-based inference to be carried out on large-scale genomic data in a computationally effi-
cient manner. We describe the theory underlying SVDQuartets, give some details concerning the
algorithms used for estimation, and provide examples of its implementation in PAUP*. The second
method we describe is designed to estimate parameters associated with a fixed species tree topology,
such as the speciation times, using a composite likelihood approach. We describe how the compos-
ite likelihood is computed, as well as its use in a Bayesian context to derive statistically consistent
estimators of the speciation times. Both procedures are implemented in the PAUP* software, al-
lowing the analyses to be carried out with user-friendly software. We provide recommendations for
use of these methods, and carefully describe their strengths and weaknesses. Finally, we use the
genome-scale data on gibbon species analyzed by Carbone et al. (2014) and Shi and Yang (2018)
to demonstrate the performance of the methods.

2 Estimation of the species tree topology using SVDQuartets

2.1 Theoretical basis

As its name implies, SVDQuartets is a method for species tree inference that is based on the
examination of quartet relationships. Thus, we begin by describing the model that SVDQuartets
assumes for the relationships among quartets (collections of four taxa) under the coalescent model.
Consider four species numbered 1 through 4, and note that there are three possible unrooted
phylogenies relating these four species, as shown in Figure 1. To derive the theory underlying
SVDQuartets, we make the following assumptions. First, we assume that our data consist of a
collection of aligned sites from the genomes of the four species under consideration. We assume
that, conditional on the species tree, each site evolves independently of the other sites in the data
set. Thus, each site has its own underlying gene genealogy that arises under the MSC model on
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Figure 1: The three possible quartet trees for four taxa.

the species tree. We call this data type coalescent independent sites (CIS). Though we argue later
that SVDQuartets can be properly applied to linked sites sharing the same underlying gene tree,
the theory underlying the method is motivated by the setting of CIS data and we focus on that
data type in this initial description.

Next, we assume that sequence data arise along these gene trees according to one of a set of
commonly-used nucleotide substitution models that includes the GTR+I+G model or any sub-
model thereof. We further assume that no gene flow occurs following speciation, and that no
processes other than the coalescent contribute to variation among gene trees, i.e., we assume that
no horizontal transfer, gene duplication and loss, or gene conversion has occurred. The model
underlying SVDQuartets does allow for species trees that violate the molecular clock, and it allows
for variation in the effective population sizes along the branches of the species tree.

Given species 1 through 4, we can consider the probability of observing a particular configuration
of nucleotides at the tips of the tree. Let XH denote the nucleotide observed at a particular site for
species H, and let pijkl be the probability that species 1 has nucleotide i, species 2 has nucleotide
j, species 3 has nucleotide k, and species 4 has nucleotide l, i.e.,

pijkl = P (X1 = i,X2 = j,X3 = k,X4 = l). (1)

We call ijkl a site pattern, and we refer to the collection of probabilities {pijkl : i, j, k, l ∈
{A,C,G, T}} as the site pattern probability distribution. For any particular unrooted quartet
tree, we can arrange these 44 = 256 site pattern probabilities in the form of a 16×16 matrix, called
a flattening matrix, for which the rows correspond to possible nucleotides for two of the species
that form a cherry in the tree, and the columns correspond to possible nucleotides for the other
two species. As an example, the flattening matrix below corresponds to the tree in Figure 1(a):

Flat12|34 =



[AA] [AC] [AG] [AT ] [CA] · · · [TT ]
[AA] pAAAA pAAAC pAAAG pAAAT pAACA · · · pAATT

[AC] pACAA pACAC pACAG pACAT pACCA · · · pACTT

[AG] pAGAA pAGAC pAGAG pAGAT pAGCA · · · pAGTT

[AT ] pATAA pATAC pATAG pATAT pATCA · · · pATTT

[CA] pCAAA pCAAC pCAAG pCAAT pCACA · · · pCATT

· · · · · · · · · · · · · · · · · · · · · · · ·

[TT ] pTTAA pTTAC pTTAG pTTAT pTTCA · · · pTTTT


In the above matrix, the (3, 2) entry, pAGAC , is the probability of observing nucleotide A for species
1, nucleotide G for species 2, nucleotide A for species 3, and nucleotide C for species 4, for example.

Chifman and Kubatko (2015) showed that when the flattening matrix corresponds to the true
species tree (i.e., when the species used for the rows and columns of the matrix reflect a true split
in the species tree), then the rank of the flattening matrix is 10 when the molecular clock holds
for the GTR+I+G model and all submodels. When the flattening matrix does not correspond to
a split in the true tree, then the rank of this matrix is 16. Long and Kubatko (2019) extended



this result to the case in which the molecular clock is no longer required and for which effective
population sizes are allowed to vary along the tree under the GTR model and all submodels. These
results are important in two ways. First, they establish that the species tree is identifiable from
sequence data under the MSC, which is necessary to prove consistency of likelihood-based inference
methods (see [27]). Second, they provide the theoretical basis for the SVDQuartets method, which
we now describe.

Given an empirical data set consisting of either a collection of SNPs or of alignments for multiple
loci, we use the observed site pattern frequencies in the data to estimate the flattening matrices
corresponding to each of the three unrooted four-taxon trees in Figure 1. For each of these matrices,
we then compute a measure, which we call the SVDScore, that gives the distance to the nearest
rank 10 matrix. As a specific example, consider again the tree in Figure 1(a) and suppose that the
Flat12|34 matrix has been estimated by substituting the observed frequency of each site pattern for
the true probabilities. For this matrix, we then carry out singular value decomposition. Letting σ̂j
represent the jth singular value, we define the SVDScore as

SVDScore :=

√√√√ 16∑
i=11

σ̂2i , (2)

i.e., the SVDScore is the square root of the sum of squares of the 11th through 16th singular val-
ues. The Eckhart-Young Theorem [10] establishes that this is the distance to the nearest rank 10
matrix under the Frobenius norm. When the flattening matrix corresponds to the true quartet
relationships found in the species tree, the true values of the 11th to the 16th singular values are
0, and thus their estimated values are expected to be small. What this means in practical terms
is that small values of the SVDScore indicate that the quartet relationship under consideration is
likely to be that found on the true species tree, while larger values indicate lack of support for that
particular quartet relationship on the true species tree.

Example: Rank reductions for flattening matrices
To make the ideas introduced in this section more concrete, we provide a specific example that
provides some intuition for the matrix rank results discussed above. To simplify the problem, we
consider the gene tree (rather than the species tree) setting, and we suppose that there are only
two possible nucleotides that could be observed at the tips of the tree, A and G. We assume that
mutations between these two nucleotides occur at equal rates and that the nucleotides are equally
frequent. Under this model, there are four distinct classes of site patterns as depicted in Figure 2,
such that all patterns in the same class have the same probability of occurring on the tree under
this model. The flattening matrix that results is shown in the bottom right panel of Figure 2. It is
easy to see that the middle two columns and middle two rows of this matrix are identical. Thus,
although the flattening matrix has four rows and four columns (and thus its rank could be as large
as four), one of those columns is redundant, leading to a reduction in the rank of the matrix by at
least one.

We now consider a numerical version of this example to show that the rank is reduced even
further. In Figure 3, the tree considered in this example is assigned branch lengths, which are
then used to compute the probabilities of each of the 16 possible site patterns, as shown in the
left column. These site patterns can be arranged into the flattening matrix, as demonstrated in
Figure 2, and then the redundant third row and third column can be removed. It can additionally
be noted that the probabilities given in the last column can be obtained from those in the first two
columns (and similarly for the rows, though this is not shown in the figure), and so the rank of
the matrix is again reduced by one. Thus, although the maximum possible rank of the flattening
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Figure 2: Possible site patterns under the simplified model considered in our example, for which only
nucleotides A and G are possible. In each tree shown, colors indicate species (purple = species 1, green =
species 2, black = species 3, blue = species 4) and nucleotides at the tips of tree indicate a possible site
pattern. For this simplified model, all possible site patterns can be reduced to four classes in such a way
that patterns within a class have the same probability. For example, “Pattern a” (top left) includes the case
where all species have either nucleotide A or nucleotide G. These two patterns are equally probable under
the model assumed here. The flattening matrix corresponding to this tree is shown in the bottom right
panel. Note that the middle two columns and middle two rows in the flattening matrix are identical to one
another.

matrix is four, the actual rank is two, because the entire matrix can be reproduced once the first
two columns of the matrix are known.

Thus far, we have provided some intuition for why the matrix rank is reduced for flattening
matrices that correspond to the true tree. However, the question about whether similar rank
reductions occur for the two alternative flattening matrices has not been addressed. To examine
this, consider the tree that groups species 1 and 3 and species 2 and 4 together (see Figure 4). Note
that the flattening matrix for this tree can be obtained by rearranging the entries of the matrix
for the original tree, as shown in part (b) of Figure 4. With these rearrangements, no columns (or
rows) are duplicates of one another, and it can be shown that none are linear combinations of the
others, either. Thus, the rank of the flattening matrix for this alternative tree is 4.

This is a significant result, and one that forms the basis of the theory underlying SVDQuartets:
flattening matrices corresponding to the true tree show reductions in their ranks, while flattening
matrices corresponding to incorrect trees (i.e., trees that did not give rise to the observed data) do
not. Though our example here was simplified to the case of gene trees for a model with only two
observed nucleotides and equal mutation rates, the principles hold directly for the more complicated
case of data arising under the MSC. The only changes are that the full set of nucleotides are
considered, leading to 256 site patterns and flattening matrices that are 16 × 16. For a quartet
that reflects the true species-level relationships, the rank of the corresponding flattening matrix is



AA AG GA GG

AA 0.093008 0.061355 0.061355 0.068115

AG 0.061355 0.046728 0.046728 0.061355

GA 0.061355 0.046728 0.046728 0.061355

GG 0.068115 0.061355 0.061355 0.093008

Expected fla6ening matrix for 1,2|3,41
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pGGAG 
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Expected site-pa6ern 
frequencies

AA AG GG

AA 0.093008 0.061355 0.068115

AG 0.061355 0.046728 0.061355

GG 0.068115 0.061355 0.093008

Delete redundant 3rd row and column...

fAA,GG = -fAA,AA + 2.62617 fAA,AG = 0.068115 

fAG,GG = -fAG,AA + 2.62617 fAG,AG = 0.061355 

fGG,GG = -fGG,AA + 2.62617 fGG,AG = 0.093008

Note that we can now obtain the last column 
of the above matrix as a linear combinaHon of 
the first two columns:

∴ matrix has only two linearly independent 
rows and columns; rank is 2

Figure 3: Continuation of the example in Figure 2 to consider a specific numerical example. The example
tree with branch lengths shown in the top left can be used to compute the 16 possible site pattern probabilities
listed in the left column. Arranging these in the flattening matrix and removing the redundant third column
shows that the last column can be expressed as a linear combination of the first two, leading to a further
reductions in the rank of the flattening matrix to rank 2.

10 (rather than 2, as in our example), while the rank for an incorrect tree is 16 (rather than 4,
as in our example). These results have been proven mathematically, and hold for any substitution
model that fits the assumptions of the GTR+I+G model when the molecular-clock assumption
is satisfied. Even if the clock assumption is violated, the result still holds for all submodels of
GTR that assume equal rates among sites. For GTR submodels including invariable sites or other
mixtures of rates, the rank is still reduced for the true tree, but by a lesser amount.

One reason that this result is so important is that calculating the rank of a small matrix is trivial
in terms of computation time, and can be completed in fractions of a second. In practice, however,
the flattening matrix must first be estimated from data, and the resulting numerical calculation
of the matrix will always give a rank of 16, even for the true tree. This is due to the fact that
sampling error in the estimates of the entries of the flattening matrix will result in the middle two
columns in our example being similar, but not identical. This is why the SVDScore in Equation 2
is used; it allows us to measure how similar a matrix is to being of a certain rank, even when it is
not precisely the desired rank. This score has well-developed mathematical theory behind it, and
has been used in other phylogenetic contexts, as well [1, 2]. It can also be rapidly computed, and
has been shown to be useful in differentiating between trees [7, 11, 15].



(a)
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AG b d d b
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Figure 4: Flattening matrices for the original example tree (a) and for the tree in which species 1 and 3 and
species 2 and 4 are grouped together (b). Colors refer to species labels as defined in Figure 2 and matrix
entries refer to the site pattern probabilities from Figure 2. Note that the matrix in (b) has no duplicate
rows or columns.

2.2 Accounting for incomplete lineage sorting in SVDQuartets

In the example above, gene trees were used to gain intuition about how the reduction in matrix rank
arises for the flattening matrix corresponding to the true tree. In the full SVDQuartets method,
however, the reduction in matrix rank is achieved for a species tree under a data model based on
the multispecies coalescent. In this section, we provide a short, non-technical description of how the
coalescent process is incorporated into SVDQuartets to accommodate incomplete lineage sorting
(ILS; see Chapter 1 for a description of ILS and how it is related to gene trees).

To illustrate the model, consider a species tree with three taxa, as shown in the left panel of
Figure 5. Recall from Chapter 1 that the coalescent process can be used to specify the probability
of each of the four possible gene tree histories that can arise from this species tree. These are shown
in the middle panel of Figure 5 with their probabilities labeled on the arrows that lead from the
species tree. The coalescent model also specifies a probability distribution on the lengths of the
branches within these gene tree histories. These probabilities distributions are not shown here, as
they don’t provide any insight into the model (the interested reader can consult [13, 19]). Along
each gene tree history, sequence data arise in the same way as described in the gene tree example
above to generate site patterns (third panel in Figure 5). When a single site pattern is assumed to
have arisen along each gene tree, a CIS data set is generated. When multiple site patterns arise
from a fixed gene tree and data from many such gene trees are observed, the data are referred to
as multilocus data.

The previous paragraph described the mechanism by which data are generated, but how is this
data generation mechanism incorporated into SVDQuartets? The key idea is that the entries in the
theoretical flattening matrix (i.e., the one that contains the true site pattern probabilities rather
than those estimated from the data) are computed under the model in Figure 5. For example,
consider the probability associated with the observed site pattern GTT . We can see from Figure
5 that there are several “paths” by which we could observe this site pattern: it could have arisen
from any of the four gene tree histories in the second panel of the figure. Thus, to compute its
probability, we need to sum over the probability that it was generated from each of the gene trees
histories, weighting by the probability that the particular gene tree history was generated by the
species tree. Branch lengths are handled similarly, except that we must integrate over the branch
length distribution because the branch lengths are continuous. Chifman and Kubatko (2015) used
the Mathematica software to compute these integrals for the two possible rooted four-taxon species
trees. They obtained analytical expressions that could then be used to prove mathematically that
the rank of the flattening matrix is reduced for the true tree under the coalescent model. Thus,
although the data used for SVDQuartets are often presented as a concatenated data matrix, it is
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Figure 5: The data generation process for a species-level phylogeny with three species. The species tree is
shown in the leftmost panel. The length of the branch between speciation events is t. The second panel shows
the four possible gene tree histories that are compatible with the species trees, along with their probabilities
(labeled on the arrows). Note that the first two gene tree histories share the same topology but differ in the
timing of the coalescent event uniting species B and C (see Chapter 1 for details). The third panel shows
that site pattern GTT can arise from any of the four histories.

important to remember that SVDQuartets does formally model ILS arising from the multispecies
coalescent.

2.3 Species tree inference: quartet sampling and assembly

In the previous section, we described the analysis used by SVDQuartets for trees with only four
taxa. We now describe the method used by SVDQuartets as implemented in PAUP* (http:
//paup.phylosolutions.com) for inferring the species tree. To begin, the data must be input into
PAUP* in Nexus format. Optionally, the Nexus file also contains a taxpartition command that
can be used to map sequences to species in the case in which multiple individuals are sampled for
one or more of the species under consideration. The analysis is run using the svdq command in
PAUP*.

By default, the software will consider all possible combinations of four sequences, each selected
from a distinct species, if this number is not too large. If this number is too large, then samples
of four sequences may be randomly selected. PAUP* allows this step to be parallelized via multi-
threading, as each quartet can be evaluated independently of the others. SVDQuartets can easily
evaluate all possible quartets for up to 100 taxa, and this number can be pushed to 200 or more
taxa depending on the speed of the computer, the number of processor cores available, and the
length of time the user is willing to wait. Unfortunately, there is not a straightforward answer to
the question of how many random quartets should be sampled for problems that are too large for
exhaustive quartet sampling. In general, the more the better, but the number needed to obtain an
accurate estimate of the species tree topology will depend on several data-specific characteristics,
such as the informativeness of the inferred quartet trees and the extent to which they conflict with



one another. We recommend that users experiment with increasingly large numbers of sampled
quartets and assess stability in the inferring species tree across these runs.

For each quartet, three flattening matrices, one corresponding to each of the unrooted four-
taxon trees in Figure 1, are estimated, and the SVDScore defined in Equation 2 is computed for
each. The three scores are compared, and the tree that produces the smallest score is retained as
that inferred for the quartet under consideration. The result after considering all quartets (or a
random sample of quartets) is a list of quartet trees that is then used as input to a quartet assembly
algorithm. More information on the process of quartet assembly is given in Section 2.4 below. The
result of the assembly process is an estimate of the unrooted species tree topology. The procedure
used by SVDQuartets is shown in Figure 6.

2.4 Algorithmic details

A complication that arises when calculating the SVDScore (Equation 2) involves the numerical
accuracy and stability of the singular value decomposition. A number of algorithms exist for
computing the SVD of a matrix, and care must be taken to select an appropriate one; e.g., accuracy
of SVD algorithms is tied, in part, to minute details of floating-point arithmetic characteristics on
the processor being used. Our usage in SVDQuartets differs from many applications of SVD in
that accurate estimation of the smallest entries in the vector of singular values is important.

We use routines from the highly regarded LAPACK Fortran library [3], which are the only ones
we evaluated that do not crash or exhibit other numerical problems for some inputs. The primary
method used for singular value decomposition in PAUP* is the DGESDD routine from LAPACK
(which is also used by R, MATLAB, and other numerical software). However, we have discovered
that the singular values returned by this method can be inaccurate for sparse flattening matrices
containing many zero entries (i.e., when many of the 256 possible site patterns for 4 taxa are not
observed). Very small singular values can occur in this case, and sometimes values that should
be exactly zero are instead returned as small positive numbers. The numerical inaccuracy can be
great enough to cause the wrong quartet topology to be preferred, or one of the topologies to be
chosen as best when in fact all three topologies should have equal scores.

Several modifications to the code have been made to improve accuracy of computing the singular
values of the flattening matrix under these conditions. First, rows and columns containing all-zero
entries are removed prior to performing the SVD (which does not affect the estimated rank of the
matrix). In addition to improving the accuracy of DGESDD, this matrix reduction sometimes
makes SVD calculation entirely unnecessary, as the rank of the matrix cannot be greater than
min(number of rows, number of columns). Second, when all three of the quartet topologies have
very similar SVDScores, an additional SVD is performed using the slower, but more accurate,
LAPACK routine DGEJSV; the singular values returned by DGEJSV are then used to recalculate
the scores for the quartet. Third, if the scores for all three topologies for a quartet are equal (within
a tolerance for floating-point roundoff error), the quartet is simply discarded. In earlier versions
of PAUP*, one of the three resolutions was kept, and the decision as to which one was chosen was
impacted by the numerical inaccuracy described above.

A second critical issue is the method used to assemble the results from individual quartets into
an overall tree. This assembly requires solving the NP-complete Maximum Quartet Consistency
(MQC) problem [12]. Many heuristics have been proposed to approximate solutions to MQC. We
tested several of them, and found the Quartets MaxCut (QMC) [24] and Quartet FM (QFM) [20]
to outperform the alternatives, and chose to implement QFM for PAUP*. We developed a novel
implementation of QFM based on the algorithmic descriptions in Reaz et al. (2014) [20] that runs
much faster than their original implementation. We also modified certain aspects of the algorithm



1         2         3         4
Species 1234567890123456789012345678901234567890
-------------------------------------------------

A AAAAGGGCTCAAAACGCTCTGTTACGAGAACCTGCTGGAG

B AAAAGGGCTCAAAACGCTCTGTTACGAGAACCTGCTGGAG

C AAAAGGGCTCAAAACGCTCTGTTACGAGAACCTGCTGGAG

D AAAAGGGCTCAAAACGCTCTGTTACGAGAACCTGCTGGAG

E AAAAGGGCTCAAAACGCTCTGTTACGAGAACCTGCTGGAG

F AAAAGGGCTCAAAACGCTCTGTTACGAGAACCTGCTGGAG

G AAAAGGGCTCAAAACGCTCTGTTACGAGAACCTGCTGGAG

H AAAAGGGCTCAAAACGCTCTGTTACGAGAACCTGCTGGAG
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Figure 6: Schematic of the estimation procedure used by SVDQuartets. The input data set consists
of eight species, labeled A through H. The first step is to consider quartets of species and compute
the SVDScore for each of the three possible unrooted topologies for these quartets. The figure
shows three example quartets, indicated by arrows of different colors. For example, the purple
arrow indicates selection of species A, B, C, and D, and of the three possible unrooted trees
for this quartet, the one that places species A and B together (circled in purple) has the lowest
SVDScore. This tree is then retained and used as input for the quartet assembly step (bottom of
the figure). A similar process is shown for quartets consisting of species E, F , G, and H (blue
arrow) and B, D, F , and H (green arrows). The black dots indicate that all possible quartet
samples, including those not shown here, would need to be evaluated in this way. The bottom of
the figure indicates that the inferred quartet trees from the first step are used as input for a quartet
assembly procedure that then produces the estimate of the species tree (bottom right).



that improved its effectiveness (to be published elsewhere).

2.5 Uncertainty quantification

Thus far, we have described the process by which SVDQuartets can be used to estimate the species
tree topology. When obtaining a phylogenetic estimate at any level, it is also important to obtain a
measure of uncertainty in the phylogenetic estimate. For SVDQuartets, the most natural measure
of uncertainty is obtained by bootstrapping, which is implemented in PAUP* in two different forms.
If the input data to be used in SVDQuartets are SNPs, then the proper bootstrap procedure is to
sample sites at random with replacement from the input aligned SNP data. For each bootstrap
replicate, SVDQuartets is used to estimate a species tree as described in the previous section, and
these bootstrap species trees are summarized with a consensus tree. The bootstrap support for
partitions not appearing in the consensus tree is also reported, and the species trees estimated for
each bootstrap replicate can optionally be written to an output file.

The procedure is similar in the case of multilocus data, with the exception that the process by
which the bootstrap samples are drawn uses the method of Seo (2008) [22]. To illustrate the process
in this case, consider a data set that consists of M loci with ni sites for locus i, i = 1, 2, . . . ,M .
To obtain a single bootstrap sample in this case, M loci are selected at random with replacement
from the set of loci in the sample. For each sampled locus, say j, a sample of nj sites is selected at
random with replacement from the original data for that locus. These data then form a bootstrap
data set from the original data. This process is repeated to obtain the desired number of bootstrap
data sets, and the analysis and summary of the bootstrap data then proceeds as described above
in the case of SNP data.

2.6 Application to species relationships among gibbons

As an example, we’ll apply SVDQuartets to a data set consisting of five species of gibbons [6,
23]. The data set for coding regions used in [23] consists of 11,323 genes for a total of 2,264,600
sites for six species: Hylobates moloch (1 individual sampled); H. pileatus (1 individual sampled);
Symphalangus syndactylus (2 individuals sampled); Hoolock leuconedys (2 individuals sampled);
Nomascus leucogenys (2 individuals sampled); and Homo sapiens (1 sequence was used as the
outgroup). Note that each individual contributes two sequences to the data set, and so the overall
data set consists of 17 sequences.

SVDQuartets was run by sampling all possible quartets, with uncertainty measured using 100
bootstrap replicates in the multilocus bootstrap procedure. The entire analysis took 8.23 seconds
on a desktop machine, and the estimated tree is shown in Figure 7. Shi and Yang (2018) analyzed
these data using the MCMC-based method BPP, and found that, across 10 independent runs, two
distinct trees were identified as the maximum a posteriori (MAP) tree (one was found in seven of
the 10 runs, with the other found by the remaining three). Interestingly, the two trees found by
BPP differ from the tree inferred by SVDQuartets in the placement of N. leucogenys, with it being
placed sister to the clade containing S. syndactylus and Ho. leuconedys in the majority of the runs
and sister to the entire group in the remaining runs. The somewhat low bootstrap support for the
clade containing this species (i.e., bootstrap support of 83) indicates that the data are not strongly
informative about placement of this species, which is reflected in the BPP analysis. Further analysis
of these data (see Section 3.4 below) indicates very short intervals between speciation events in the
evolutionary history of this species.
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Error
95% HPD  
Interval

tH 1.8892 0.0412 (1.8140, 1.9822)

tHN 2.5×10-10 4.86×10-9 (0, 1.19×10-8)

tSH 0.0822 0.0195 (0.0419, 0.1193)

tR 10.60 0.2616 (10.11, 11.12)

Figure 7: Species tree estimated by SVDQuartets (left) and MAPCL estimates of branch lengths in
coalescent units (right) for the gibbon data of Carbone et al. (2014). Numbers above the internal
nodes are bootstrap support values, and notation below the branches indicates the label of the
branch used to report the estimated length in the table at the right. Note that SVDQuartets
estimates an unrooted tree; the tree displayed here has been rooted using the human sequence as
an outgroup.

2.7 Properties of SVDQuartets

In this section, we review the assumptions underlying SVDQuartets and describe its properties. In
doing so, we describe scenarios under which SVDQuartets should and should not be applied.

2.7.1 Assumptions and misconceptions

SVDQuartets was introduced above for CIS data, i.e., data for which each site is generated from its
own underlying gene tree which in turn has been generated from the species tree via the MSC, and
the theoretical derivations described above assume this data structure. It is also directly applicable
to SNP data sets, because constant site patterns (which are included in CIS data but would not
be included in SNP data) do not impact the reduced rank results on which the method is based
(e.g., in our example above, the two middle columns in the flattening matrix that were equal to
one another did not involve any of the constant site patterns).

SVDQuartets can also be used to analyze multilocus data. To gain some intuition for why
this works, recall again that for CIS data, each site is an independent observation arising from the
species tree under the MSC. The method then works by using observed site pattern frequencies
to estimate theoretical site pattern probabilities derived under the model. What changes when
moving to multilocus data is that now each gene tree provides information about the distribution
of site patterns under the MSC by contributing many correlated sites, i.e., sites within a given locus
are not independent because they come from the same underlying gene tree. In one sense, this is an
advantage: we get more information about each gene tree. But on the other hand, this is not quite
as good as having an equivalent number of independent sites, as these will carry more information
that is directly relevant about the species tree. Nonetheless, having increased information about
each locus is helpful in obtaining the overall phylogenetic estimate. When the number of loci is
large, so that we have sufficient data to capture the variation in the underlying gene trees, then
the multilocus estimate will perform very well, and better, in fact, than an estimate obtained from
using only one SNP from the same number of loci. For this reason, we recommend that multilocus
data be used when they have been collected. For example, we do not suggest that RADseq data
be filtered to provide only one SNP per locus; rather, all sequence data collected should be used in



the analysis.
The description above highlights a key requirement for SVDQuartets to perform well: the

amount of data must be sufficient to enable accurate estimation of the flattening matrix corre-
sponding to the true tree, so that the SVDScore will be able to “detect” the reduction in matrix
rank. The number of sites needed depends to some extent on the underlying species tree, particu-
larly on the probability with which sites that are informative about the reduced rank are generated.
It also depends on whether CIS or multilocus data are used. Application of SVDQuartets to data
collected for only a handful of loci is not likely to result in accurate species tree estimates, even if all
of the loci are quite long, because such do not provide adequate information about variation among
gene trees. On the other hand, several thousand CIS may be sufficient for some species trees, since
each site is directly informative about the species tree. In both cases, however, it should be noted
that trees with short internal nodes may require large sample sizes, as short species tree branches
result in shallow gene trees which in turn produce data with a relatively low proportion of variable
sites. Though this situation is challenging for all inference methods, it is particularly difficult for
SVDQuartets when the number of sites is small.

A strength of SVDQuartets is that it is valid for a wide range of substitution models, although
the model need not be specified explicitly. In addition, there is no requirement to estimate model
parameters or to compute likelihoods. This has led some researchers to consider this a nonparamet-
ric or “model-free” method, but this is not accurate: the theory on which SVDQuartets is based
assumes both the MSC and a standard substitution model, and features of the probability distri-
butions arising from these models are precisely the information that is used for inference. Another
misconception about SVDQuartets is that it is a “concatenation” method, an idea that appears to
have originated from the fact that the input format for the analysis is a concatenated data matrix
for which gene boundaries need not be specified. However, it is important not to confuse the data
format with the underlying model. Recall that SVDQuartets assumes a model for which each site
has its own underlying gene tree. Thus, the reason that gene boundaries need not be provided is
because each site is assumed to be its own gene, independently sampled from the species tree. This
is in direct contrast to concatenation methods that assume that all sites have a single underlying
gene tree.

Finally, SVDQuartets has been referred to as a summary method for species tree inference [23]
(p. 172) because the data used as inputs are counts of the 256 possible site patterns for each quartet.
However, SVDQuartets is distinct from summary methods that estimate gene trees for each locus
as a first step and subsequently use these estimated gene trees as input to estimate the species
tree. Further, we do not view SVDQuartets as a summary method in any sense, as counts of the
observed site patterns are a valid presentation of the input data, in the same way that a multiple
sequence alignment (MSA) is a valid presentation of the input data. In fact, an MSA could also
be viewed as a summary, in the sense that the raw read count data obtained in the sequencing
reaction have been summarized to produce a single sequence to represent each taxon.

2.7.2 Statistical consistency

One property of a phylogenetic estimator that is often used to compare methods is that of statistical
consistency. A statistically consistent estimator is one that becomes increasingly likely to be equal
to the truth as the amount of data increases. Recent work [27] has shown that SVDQuartets
provides a statistically consistent method for estimating the species tree. This result builds on two
key ideas. First, entries of the flattening matrix are consistently estimated, leading to consistent
estimation of the SVDScore. Consistent estimation of the SVDScore ensures that the quartet trees
used as input to the quartet assembly algorithm are all correct when the data set size is sufficiently



large. Second, it is well-known that quartet relationships uniquely identify a tree [21], and thus an
input data set consisting of true quartet relationships will result in the correct species tree estimate.
Importantly, this consistency result holds for both multilocus and CIS data, and thus SVDQuartets
is an accurate method of species tree estimation for large data sets, whether multilocus or CIS data
are used. A detailed simulation study is included in [27], including comparisons with the Bayesian
method BPP, for four-taxon problems.

2.7.3 Missing data and data filtering

Phylogenomic data commonly contain a very high proportion of missing data. SVDQuartets has
two options for handling missing data. The first option is to ignore the missing data. If this option
is selected, then the complete data set is considered for each set of four taxa that are sampled. If
there are sites for which some data are missing for one of the four taxa under consideration, then
those sites are not used in computing the SVDScore for that quartet. In this way, each quartet
evaluation uses the maximum amount of non-missing data possible. The second option is to impute
the missing data in the following way. Each site in the sequences contributes a count of 1 to the
relevant site pattern frequency estimate, so if data are missing for one or more sites, then this count
could be distributed over possible site patterns. For example, consider a site at which taxa A, B,
and C have nucleotide T , but data at this site for taxon D is missing. Since the missing nucleotide
could be either A, C, G, or T , we increment the counts of the patterns TTTA, TTTC, TTTG,
and TTTT each by some fractional amount. This amount could be chosen based on the observed
proportion of each nucleotide in the input data, or based on some assumptions about the relative
proportions of nucleotides. For example, if all nucleotides are assumed to be equally frequent, then
each of the four site patterns listed above could be given a count of 0.25. In this way, missing
data is accommodated by using the information available at this site (i.e., taxa A, B, and C have
nucleotide T ), while incorporating the information about the uncertainty in the nucleotide at that
site for taxon D.

Large phylogenomic data sets are often fairly informative about the species tree, even when
the proportion of missing data is large. In other words, what often matters is how much data you
have, rather than how much data you don’t have. Large data sets will necessarily often have a high
percentage of missing data, yet still lead to relatively certain estimates for many relationships in the
species tree. For this reason, we do not recommend that users filter their data prior to analysis with
SVDQuartets. Subjective filtering can lead to biases in the retained sites, and the computational
efficiency of SVDQuartets, coupled with its intuitive approach for handling missing data, make its
application to all sampled data the recommended approach.

2.8 Recommendations for using SVDQuartets

When selecting a method for analyzing data with the goal of estimating the species tree, it is
important to consider the characteristics of the data in relation to the requirements of possible
inference methods. At the core of the SVDQuartets method is the need to estimate the site pattern
probabilities accurately for each of the quartet trees, so the primary requirement in terms of data is
that the data are sufficient to obtain reliable estimates of these probabilities. In general, this means
that the performance of the method will improve as the amount of data increases. It also means
that when the overall data set size is small (either in the number of loci or the number of sites or
both), the method may not perform as well. We suggest that users exercise extreme caution when
applying the method to fewer than 20 loci or fewer than 5,000 SNPs. On the other hand, a strong
advantage of SVDQuartets is that it is computationally efficient for very large data sets. We have



successfully applied the method for millions of sites (see, e.g., the gibbon data analysis in Section
2.6) and hundreds of taxa.

SVDQuartets should always be run in conjunction with an appropriate bootstrapping approach
(i.e., either the standard or the multilocus bootstrap). It is also important to note that SVDQuar-
tets returns an unrooted estimate of the species tree, and hence rooting with an outgroup or some
other appropriate method must be applied if a rooted estimate of the species tree is desired. An ad-
vantage of SVDQuartets is that it is not necessary to specify a substitution model, and the method
remains valid if there is variation in the substitution model across the input sites when the molecu-
lar clock holds, provided that the models governing all partitions are submodels of GTR+I+G. In
practice, settings in which there is extensive heterogeneity in the models that apply to different data
partitions may require large sample sizes for accurate estimation of the species tree. SVDQuartets
can also be applied in settings where the molecular clock is violated, and when there is variation
in effective population sizes throughout the tree [16]. SVDQuartets is also robust to the presence
of gene flow between sister taxa [17].

3 Estimation of speciation times

In this section, we describe a method that uses site pattern frequencies to estimate speciation times
for a fixed species phylogeny. The method uses the likelihood for four-taxon trees to construct a
composite likelihood for species trees of arbitrary size. Maximization of this composite likelihood
leads to estimators that are statistically consistent and asymptotically efficient, and that can be
computed efficiently in practice. In the sections below, we describe the theoretical basis for comput-
ing these estimators, methods for quantifying uncertainty in the estimates, and recommendations
for their use. We note that although the estimates are based on quartets and use site pattern fre-
quencies as input data, they are distinct from the SVDQuartets method described in the previous
section. In particular, they can be applied to a species tree topology that has been estimated by
any method.

3.1 Theoretical basis

As mentioned in the previous section, there are 256 possible site patterns that can arise on a
four-taxon species tree. Chifman and Kubatko (2015) showed that for the rooted symmetric and
asymmetric species trees, these 256 site patterns can be reduced to 9 and 11 classes, respectively,
in such a way that site patterns within each class occur with equal probability under the MSC with
the JC69 substitution model. For example, it is clear that for the JC69 model, pAAAA = pCCCC =
pGGGG = pTTTT for any tree, while for the tree in Figure 1(a), pAAGG = pAACC = . . . = pGGTT .
In addition to defining these classes for both symmetric and asymmetric trees, [8] derived analytic
expressions for the probability of a site pattern in each class. These expressions can be used
to compute the likelihood for site pattern frequency data on a fixed species phylogeny using the
multinomial distribution, as described below.

We consider the symmetric species tree shown in Figure 8 in defining the relevant notation; the
asymmetric case is analogous. This species tree includes three speciation times, labeled τ1, τ2, and
τ3. For this tree, the nine distinct classes of site patterns can be specified by

pxxxx, pxxxy = pxxyx, pxyxx = pyxxx, pxyxy = pyxxy, pxxyy,

pxyxz = pyxxz = pxyzx = pyxzx, pxxyz, pyzxx, pxyzw. (3)
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Figure 8: Example symmetric species tree with speciation times τ1, τ2, and τ3.

where x, y, z, and w are states ∈ {A,C,G, T} observed in each of four distinct taxa. For example
pxxxx includes the patterns pAAAA = pCCCC = pGGGG = pTTTT . We label the classes above 1-9,
and denote the vector of 9 probabilities corresponding to these classes by p = (p1, p2, . . . , p9). We
note that each of these probabilities is a function of both the speciation times and the effective
population size, which is assumed to be constant throughout the tree and is denoted here by θ.
The precise expressions for these probabilities are given in [8], and we refer the reader there for
further details.

Let Y = (y1, y2, . . . , y9) denote the number of site patterns observed in each of the classes.
Then for CIS data, the likelihood of the speciation times and the effective population size is given
by

L(τ1, τ2, τ3, θ|Y) ∝
9∏

j=1

p
yj
j . (4)

We note again that the pj are functions of the τ ’s and θ, though we have suppressed that notation
here for ease of exposition. This likelihood is used to form the basis of our inference procedure.
For example, this likelihood (or equivalently, its logarithm) can be maximized to obtain maximum
likelihood estimates (MLEs) of the parameters in the case of a fixed four-taxon species tree.

While this procedure is straightforward in the four-taxon case, expressions analogous to the pis
cannot be efficiently computed for five or more taxa, prohibiting the use of this likelihood framework
directly for species trees with more than four tips. Therefore, as an alternative to computing the
true likelihood, we use instead the composite likelihood for estimation of the parameters for species
trees of arbitrary size. In order to form the composite likelihood, we first decompose the set of
taxa into all possible quartets. We then compute the four-taxon likelihood given by Equation 4 for
each of the quartets. Finally, we combine the four-taxon likelihoods by taking their product. Let Q
be the number of unique quartets that can be obtained by sampling one lineage from each of four
distinct species. Any quartet i induces a subtree on the full tree containing three internal nodes
ui, vi, and wi corresponding to nodes 1–3 in Equation 4. This subtree may be either symmetric
or asymmetric, with either n(i) = 9 or n(i) = 11 distinct site patterns, respectively. Rewriting
the likelihood for quartet i as Li(τui , τvi , τwi , θ|Y), corresponding to Equation 4, the composite
likelihood is given by

`(τ1, τ2, . . . , τR, θ|Y) ∝
Q∏
i=1

Li(τui , τvi , τwi , θ|Y) =

Q∏
i=1

n(i)∏
j=1

p
yj
j . (5)

The parameter values for which this function is maximized are called maximum composite likelihood
estimates (MCLEs). See Figure 9 for a depiction of the process of computing the composite
likelihood for a 5-taxon tree.
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Figure 9: Schematic representation of the computations of the composite likelihood for a 5-taxon species
tree (top left) with branch lengths t1, t2, t3, and t4. Red arrows point to the five possible quartet trees that
are obtained by removing one taxon from the species tree. Branches for each quartet tree are re-labeled
appropriately, and the likelihood based on the multinomial likelihood is computed for each, as indicated by
the terms below each tree. To compute the composite likelihood, the terms below the five quartet trees are
multiplied.

Note that the procedure above entails multiplication of the quartet likelihoods, even though they
are not independent. If the quartet likelihoods were independent of one another, then multiplying
them together would lead to computation of their joint probability. However, this will not be the
case when there is dependence among the quartets, which is why a likelihood formed in this way
is termed a composite likelihood (or pseudolikelihood). To see the lack of independence, refer to
Figure 9, which shows the five quartet trees that can be obtained from the species tree in the top
left. Comparing Quartets 1 and 2, for example, we observe that they share three taxa in common
and that both include the same set of branch lengths. Thus, they use overlapping sets of data to
compute their quartet likelihoods, and they share a set of parameters (the three branch lengths on
their quartet trees), so they are clearly not independent of one another. Similar comparisons can
be made among all pairs of quartets.

Intuitively, the composite likelihood is useful for inference because values of the parameters that
maximize the true likelihood are likely to lead to large values for each of the quartet likelihoods
as well. Thus the composite likelihood contains information about which values of the parameters
are likely to provide reasonable explanations of the data. Indeed, there is a rich literature on the
use of composite likelihood approaches for inference in situations where computation of the full
likelihood is infeasible, including theoretical results about the statistical properties of estimators
obtained using composite likelihood approaches (see, e.g., [26] for a recent review). Peng et al.
(2021) have shown that the values of the speciation times that maximize the composite likelihood
in Equation 5 are statistically consistent and asymptotically normally distributed, by proving that
the results of [4] can be applied in this case. This enables implementation of a computationally
efficient method for obtaining estimates of these parameters with good statistical properties.

Instead of using composite likelihood directly, however, we have found it preferable to estimate
parameter values via Bayesian maximum a posteriori (MAP) estimation. In addition to allowing
incorporation of prior knowledge into the estimate, weighting the (composite) likelihood by the pri-
ors improves the computational efficiency and stability of the optimization algorithms by reducing
the flatness of the optimality surface in regions of the parameter space that have very low likelihood
(see below). Prior distributions are placed on both θ and the total tree height h=τR (R is the index



of the root node). If fθ(θ) and fh(τR) represent the probability density functions for these prior
distributions, then the log of the posterior density is proportional to

log g(τ1, τ2, . . . , τR, θ|Y) = log fθ(θ) + log fh(τR) +

Q∑
i=1

logLi(τui , τvi , τwi , θ|Y) (6)

(g is an unnormalized posterior density because it lacks a marginal likelihood term). We refer
to the parameter values that optimize this function as MAPCL estimates, with the subscript “cl”
signifying that a composite-likelihood term is used in Equation 6 rather than a true likelihood. Note
that PAUP* allows frequentists to omit the prior terms in Equation 6 to obtain MCLEs instead,
although for reasons explained below, larger amounts of data may be needed to avoid numerical
difficulties during the optimization.

3.2 Algorithmic details

The goal is to obtain estimates of the speciation times and the effective population size that
maximize the posterior density function g in Equation 6. Several algorithmic issues arise in the
development of a computationally efficient estimator that performs well, and we briefly describe
those here.

A key concern is that the value of the effective population size, θ, has a large impact on the
estimates of the speciation times, but the composite likelihood surface is relatively flat with respect
to the effective population size parameter. Thus routines for numerical optimization are extremely
sensitive to the starting point chosen for θ, making it important to choose a good initial value
for this parameter. To address this complication, a grid search is first carried out in conjunction
with the moment-based estimators for the speciation times given in [14] to determine an interval
that provides loose lower and upper bounds on the optimal θ value. The starting θ value is then
optimized numerically using a two-step procedure in which the bracket is first narrowed via a golden
section search, then polished using a derivative-free one-dimensional optimizer. Initial values for
the speciation times are determined using the moment-based estimators computed at the starting
value chosen for θ.

We then use multidimensional optimization techniques to search numerically for values of the
speciation times and effective population size parameters that maximize the log posterior density.
This optimization involves reparameterization of the speciation-time parameters in order to enforce
the constraint that a node cannot be older than its parent, as well as variable transformations to
eliminate bounds, facilitating efficient unconstrained optimization. Partial derivatives of function
g with respect to the transformed parameters can be computed efficiently, allowing use of gradient-
based optimizers; we use the quasi-Newton L-BFGS algorithm.

Full details of the PAUP* implementation are provided in the Supplemental Material to [18],
which interested readers can consult for more information.

3.3 Uncertainty quantification

As was the case when estimating the species tree topology using SVDQuartets, it is important to
provide a measure of the uncertainty associated with the MAPCL estimates. While the application
of results from [4] provides an explicit expression for the asymptotic variance, we have found this
variance estimator to be unstable in practice. Thus, we recommend instead that bootstrapping
be used to estimate the variance. The implementation of the MAPCL method in PAUP* includes
options for both the standard and the multilocus bootstrap, and we have found that these methods
perform well in practice [18].



3.4 Application to species relationships among gibbons

To demonstrate the performance of the MAPCL estimators, we return to the gibbon data analyzed
with SVDQuartets in the previous section. Using the tree estimated by SVDQuartets (Figure 7), we
obtain estimates of the speciation times as well as their variances using the PAUP* command: qage
patProb=exactJC taxpartition=gibbonspecies loci=lociset bootstrap=multilocus;. The
estimates are shown in Figure 7. We note that the MAPCL procedure provides estimates that are
both fast and accurate – this analysis took 10.79 seconds on a desktop machine, and compares
favorably to the estimates provided by BPP using a much longer run time, as reported in [18].
In addition, the MAPCL estimates were found to be much more robust to the choice of prior
distribution than those obtained by BPP [18].

3.5 Recommendations for using composite likelihood estimators of the specia-
tion times

As described above, the MAPCL estimators assume the JC69 model under the MSC. We have used
simulations (not shown here) to demonstrate that the method can be somewhat sensitive to this
assumption. To handle cases where more general substitution processes may be operating, PAUP*
includes an option to compute the MAPCL estimation procedure under more complex substitution
models. The primary difficulty involved in using more general models is that closed form expressions
for the site pattern probabilities are no longer available, and thus these site pattern probabilities
must be approximated numerically. The implementation of this step in PAUP* is very accurate, but
requires some additional computation time. Nonetheless, estimation using the MAPCL procedure
will generally be much more efficient than the corresponding Bayesian approach.

The MAPCL estimates will benefit from larger data sets in the same way that SVDQuartets does.
The fact that MAPCL is statistically consistent means that these estimates become increasingly
accurate as the sample size increases. As was the case for SVDQuartets, there is little computational
cost associated with increasing the number of sites in the data, as counting the number of each
type of site pattern is a rapid procedure that need be done only once since the species tree is fixed
in this case. Thus, we recommend the MAPCL estimates when the number of sites in the data set,
whether multilocus or CIS, is large.

4 Conclusion and Future Work

Statistical methods for inferring species trees and associated parameters using site pattern fre-
quencies provide computationally efficient, model-based approaches with provable statistical prop-
erties, including consistency. The methods described here, SVDQuartets and MAPCL estima-
tion of speciation times, have been implemented in PAUP* in a user-friendly interface, making
them widely accessible. We have provided a tutorial that can be downloaded and/or viewed that
replicates the analyses for the gibbon data that are included here. The tutorial is available at
https://phylosolutions.com/tutorials/svdq-qage/.

Site pattern probabilities have also been applied to other problems in species-level phylogenetic
inference. For instance, they are used to form both the HyDe [5] and ABBA-BABA [9] statistics
that allow for identification of species that have arisen via hybridization. They have also been
used to identify the root position of a species tree [25]. Because they enable rapid computations
under the MSC model, methods based on site pattern frequencies are promising approaches for
computationally efficient species tree inference for large-scale data sets.



We note, however, that good performance of methods based on site pattern frequencies depends
crucially on having obtained a large sample. For CIS, this means that many independent sites are
needed, while for multilocus data, it means that the number of loci should be reasonably large
(certainly more than ∼50, but ideally several hundred to a thousand or more). Our view is that
methods based on site pattern frequencies offer a strong alternative approach to Bayesian methods
in cases where the data are too large to allow Bayesian inference in a reasonable time. When data
set sizes are smaller, Bayesian approaches can be expected to perform better and offer the advantage
of a full characterization of the posterior distributions of interest. However, as sequencing advances
continue to outpace the development of computational tools that can efficiently analyze the wealth
of available data, methods based on site pattern frequencies will be invaluable in carrying out
efficient inference in a theoretically-justified framework.
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