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Models	don’t	need	to	reflect	reality

• A	model	is	an	inten:onal	simplifica:on	of	a	complex	
situa:on	designed	to	eliminate	extraneous	detail	in	order	to	
focus	aDen:on	on	the	essen:als	of	the	situa:on.		(Daniel	L.	
Hartl,	2000)	

• "The	most	that	can	be	expected	from	any	model	is	that	it	
can	supply	a	useful	approxima:on	to	reality:	All	models	are	
wrong;	some	models	are	useful".		(George	E.	P.	Box,	1987)	

• A	model	is	a	simplifica:on	or	approxima:on	of	reality	and	
hence	will	not	reflect	all	of	reality	...	While	a	model	can	
never	be	“truth,”	a	model	might	be	ranked	from	very	useful,	
to	useful,	to	somewhat	useful	to,	finally,	essen:ally	useless.		
(Burnham	and	Anderson,	2002)	

• Model	selec:on	is	a	process	of	seeking	the	least	inadequate	
model	from	a	predefined	set,	all	of	which	may	be	grossly	
inadequate	as	a	representa:on	of	reality.		(J.	J.	Welch,	2006)



Why do models matter?
• Model-based methods including ML and Bayesian 

inference (typically) make a consistent estimate of the 
phylogeny (estimate converges to true tree as number of 
sites increases toward infinity) 

A C

B D

(Felsenstein, 1978)

... even when you’re in the “Felsenstein Zone”



In the Felsenstein Zone
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Why do models matter (continued)?

• Parsimony is inconsistent in the Felsenstein zone 
(and other scenarios) 

• Likelihood is consistent in any “zone” (when certain 
requirements are met)

But this guarantee requires that the 
model be specified correctly!  
 
Likelihood can also be inconsistent if the 
model is oversimplified

• Real data always evolve according to processes 
more complex than any computationally feasible 
model would permit, so we have to choose “good” 
rather than “correct” models



Parsimony	in	sta,s,cs	represents	a	tradeoff	between	bias	
and	variance	as	a	func,on	of	the	dimension	of	the	model.		A	
good	model	is	a	balance	between	under-	and	over-fi>ng.	
(Burnham	and	Anderson,	1998)

What is a “good” model?
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Parsimony	in	sta,s,cs	represents	a	tradeoff	between	bias	
and	variance	as	a	func,on	of	the	dimension	of	the	model.		A	
good	model	is	a	balance	between	under-	and	over-fi>ng.	
(Burnham	and	Anderson,	1998)	

What is a “good” model?

B

B B

B

B

B
B

B

0

20

40

60

80

100

0 25 50 75 100

y

x

y = 1.30+0.965x

(r2 = 0.963)

   

B

B B

B

B

B
B

B

0

20

40

60

80

100

0 25 50 75 100

y

x

y = 1.30+0.965x

(r2 = 0.963)

(good bias/variance 
tradeoff)



Parsimony	in	sta,s,cs	represents	a	tradeoff	between	bias	
and	variance	as	a	func,on	of	the	dimension	of	the	model.		A	
good	model	is	a	balance	between	under-	and	over-fi>ng.	
(Burnham	and	Anderson,	1998)	
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Assertion: In most situations, phylogenetic inference is relatively 
robust to model misspecification, as long as critical factors 
influencing sequence evolution are accommodated 

Caveat: There are some kinds of model misspecification that 
are very difficult to overcome (e.g., “heterotachy”)
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Likelihood can be consistent in Felsenstein zone, but will be 
inconsistent if a single set of branch lengths are assumed when 
there are actually two sets of branch lengths (Chang 1996) 
(“heterotachy”)

E.g.:

Why models don't have to be perfect



GTR Family of Reversible DNA Substitution Models
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Among site rate heterogeneity

• Proportion of invariable sites 
– Some sites extremely unlikely to change due to strong functional or structural 

constraint (Hasegawa et al., 1985) 

• Gamma-distributed rates 
– Rate variation assumed to follow a gamma distribution with shape parameter α 

• Site-specific rates (another way to model ASRV) 
– Different relative rates assumed for pre-assigned subsets of sites 

Lemur AAGCTTCATAG TTGCATCATCCA …TTACATCATCCA 
Homo  AAGCTTCACCG TTGCATCATCCA …TTACATCCTCAT 
Pan   AAGCTTCACCG TTACGCCATCCA …TTACATCCTCAT 
Goril AAGCTTCACCG TTACGCCATCCA …CCCACGGACTTA 
Pongo AAGCTTCACCG TTACGCCATCCT …GCAACCACCCTC 
Hylo  AAGCTTTACAG TTACATTATCCG …TGCAACCGTCCT 
Maca  AAGCTTTTCCG TTACATTATCCG …CGCAACCATCCT



Modeling ASRV with gamma distribution 

…can also include a proportion of “invariable” sites (pinv)
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Performance of ML when its model is violated 
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“MODERATE”–Felsenstein zone

α = 1.0, pinv=0.5
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“MODERATE”–Inverse-
Felsenstein zone
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• Calculate "delta" statistic

If model 0 is nested within model 1, δ is distributed 
as X2 with degrees-of-freedom equal to the 
difference in number of free parameters

δ = 2(ln L1 - ln L0)

Likelihood ratio tests



JC vs K80 models

Histogram of δ = 2(ln L0 - ln L1)



X2

3.84 6.64

0.05 and 0.01 critical values

JC vs K80 models

Histogram of δ = 2(ln L0 - ln L1)



Model selection criteria

• AICc (corrected AIC) 
 
 

Figure. Dynamical likelihood ratio tests for 24 models. At any level a hypothesis is either accepted (A)
or rejected (R). In this example the model selected is GTR+I. Hypotheses tested are: F = base frequencies; S =
substitution type; I = proportion of invariable sites; G = gamma rates.

7.5 Information Criteria

7.5.1 Akaike Information Criterion

The Akaike information criterion (AIC, [Akaike, 1974] is an asymptotically unbiased estimator of the Kullback-
Leibler information quantity [S. Kullback, 1951]. We can think of the AIC as the amount of information lost
when we use a specific model to approximate the real process of molecular evolution. Therefore, the model
with the smallest AIC is preferred. The AIC is computed as:

AIC =�2l +2k

where l is the maximum log-likelihood value of the data under this model and Ki is the number of free
parameters in the model, including branch lengths if they were estimated de novo. When sample size (n) is
small compared to the number of parameters (say, n

K < 40) the use of a second order AIC, AICc [Hurvich and
Tsai, 1989; Sugiura, 1978], is recommended:

AICc = AIC+
(2k(k+1))
(n� k�1)

The AIC compares several candidate models simultaneously, it can be used to compare both nested and
non-nested models, and model-selection uncertainty can be easily quantified using the AIC differences and
Akaike weights (see Model uncertainty below). Burnham and Anderson [2003] provide an excellent introduc-
tion to the AIC and model selection in general.

7.5.2 Bayesian Information Criterion

An alternative to the use of the AIC is the Bayesian Information Criterion (BIC) [Schwarz, 1978]:

BIC =�2l + klog(n)

Given equal priors for all competing models, choosing the model with the smallest BIC is equivalent to
selecting the model with the maximum posterior probability. Alternatively, Bayes factors for models of molec-
ular evolution can be calculated using reversible jump MCMC [Huelsenbeck et al., 2004]. We can easily use the
BIC instead of the AIC to calculate BIC differences or BIC weights.

7.5.3 Performance Based Selection

Minin et al. [2003] developed a novel approach that selects models on the basis of their phylogenetic perfor-
mance, measured as the expected error on branch lengths estimates weighted by their BIC. Under this decision
theoretic framework (DT) the best model is the one with that minimizes the risk function:

Ci ⇡
n

Â
j=1

||B̂i � B̂ j||
e
�BICj

2

ÂR
j=1(e

�BICi
2 )

where

||B̂i � B̂ j||2 =
2t�3

Â
l=1

(B̂il � B̂ jl)
2

and where t is the number of taxa. Indeed, simulations suggested that models selected with this criterion
result in slightly more accurate branch length estimates than those obtained under models selected by the
hLRTs [Abdo et al., 2005; Minin et al., 2003].
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• Akaike information criterion (AIC)
AICi = −2 lnLi +2k
where k is the number of free parameters estimated

• Bayesian information criterion (BIC)

BICi = −2 lnLi + k lnn

where k is the number of free parameters estimated and 
n is the “sample size” (typically number of sites)



AIC vs. BIC
– BIC performs well when true model is contained in model set, 

and among a set of simple models, AIC often selects a more 
complex model than the truth (indeed, AIC is formally 
statistically inconsistent)

– But in phylogenetics, no model is as complex as the truth, and the 
true model will never be contained in the model set.

– BIC often chooses models that seem too simple, however.



Par::oned	Models

“...data	par::oning	is	more	an	art	
than	a	science,	and	it	should	rely	on	
our	knowledge	of	the	biological	
system...”	

Yang	and	Rannala	(2012;	Nature	Rev.	Genet.	13:303-314)

Many	authors	have	emphasized	the	importance	of	
modeling	heterogeneity	among	genes	or	other	subsets	
of	the	data	appropriately		



Ways	to	par::on	based	on 
biological	criteria

• By	gene	

• By	codon	

• By	gene/codon	combina:on	

• Stems	vs.	loops	(probably	not	advisable—
e.g.,	Simon	et	al.,	2006)	

• Coding	vs.	noncoding



Naive	par::oning

• Run	ModelTest/JModelTest;	es:mate	
a	model	(from	the	GTR+I+G	family)	
separately	for	each	gene/subset	

• Perform	an	ML/Bayesian	analysis,	
assigning	the	chosen	models	to	each	
gene	(with	unlinked	parameters)

Too	many	parameters!		1-10	
parameters	for	each	gene;	amount	
of	data	available	to	es:mate	each	
parameter	does	not	increase



Over-Par::oning

Consider	the	following	(contrived)	example:	

• Gene	A:	HKY+G,	π	=	(0.26,	0.24,	0.23,	0.27),	𝜅=1.1,	α=3.0	

• Gene	B:	GTR,	π	=	(0.25,0.24,0.25,0.26),	(a,b,c,d,e)=(1.1,	
1.2,	0.9,	1.1,	0.95)	

• Gene	C:	JC+I	(pinv=0.05)

These	are	all	GTR	models	that	are	not	far	from	the	
Jukes-Cantor	model,	but	they	all	have	different	

names
BeDer	to	es:mate	one	GTR	model	(even	with	5+3+1+1=10	parameters,	

es:mated	from	all	data)	than	3	separate	models	with	2+5+1=8	parameters	
(but	only	one	gene’s	worth	of	data	for	each	model)



How	to	find	op:mal	par::onings?
Consider	a	data	
set	with	3	genes,	

A,	B,	and	C: BA C
BA C
CA B
CB A
BA C

For	each	par::oning	scheme,	evaluate	some	set	of	
models	from	the	GTR+I+G	(e.g.,	56	models)	according	to	
AIC	or	BIC	

Choose	a	combina:on	of	par::oning	scheme	and	model	
for	subsequent	par::oned-model	analyses

Rob	Lanfear’s	Par33onFinder	(hDp://www.robertlanfear.com/par::onfinder/)	
automates	this	process;	method	now	also	available	in	PAUP*	test	versions

http://www.robertlanfear.com/partitionfinder/


How	many	par::onings?

In	general,	the	
number	of	

par::onings	on	n	
subsets	is	a	“Bell	

number”

N Bell number

2 2

3 5

4 15

5 52

6 203

7 877

12 4 x 106

60 9.8 x 1059

Obviously,	there	are	too	many	
par::oning	schemes	to	evaluate	them	

all	for	more	than	a	few	subsets.



Greedy	algorithm	when	there	are	too	many	

BA C D

BA C D

CA B D

DA B D

DC A B

DB A C

CB A D

BA C D CB A D
CB D A

BA C D

1	+	n(n2	-	1)/6	=	11	schemes

For	1265	genes,	there	would	s,ll	be	
337,380,561	schemes	to	evaluate!

Lanfear, R., Calcott, B., Ho, S. Y. W., & 
Guindon, S. (2012). Partitionfinder: 
combined selection of partitioning 
schemes and substitution models for 
phylogenetic analyses. Molecular 
Biology and Evolution, 29(6), 1695–
1701

×
×

×
×
×

× ×



How	to	par::on	thousands	of	genes	(or	other	
subsets)?

•	Li,	Lu,	and	Or:	(2008)	
Es:mate	model	parameters	on	a	shared	model;	similar	subsets	
will	have	similar	parameter	es:mates	and	will	cluster	together.	

Problem?		Similar	models	(in	the	sense	of	predic,ng	similar	site	paSern	
frequencies),	can	have	different	parameter	MLEs.		Must	use	same	model	
for	all	subsets. 

Cluster	analysis

•	Frandsen	et	al.	(2015);	Lanfear	et	al.	(2016):	Par::onFinder2)	
Hierarchical	(or	non-hierarchical	k-means)	clustering	using	
same	idea	as	Li	et	al.	(very	efficient	implementa:on)  


