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Models don’t need to reflect reality

A model is an intentional simplification of a complex
situation designed to eliminate extraneous detail in order to
focus attention on the essentials of the situation. (Daniel L.
Hartl, 2000)

"The most that can be expected from any model is that it
can supply a useful approximation to reality: All models are
wrong; some models are useful"”. (George E. P. Box, 1987)

A model is a simplification or approximation of reality and
hence will not reflect all of reality ... While a model can
never be “truth,” a model might be ranked from very useful,
to useful, to somewhat useful to, finally, essentially useless.
(Burnham and Anderson, 2002)

Model selection is a process of seeking the least inadequate
model from a predefined set, all of which may be grossly
inadequate as a representation of reality. (J. J. Welch, 2006)



Why do models matter?

Model-based methods including ML and Bayesian
inference (typically) make a consistent estimate of the
phylogeny (estimate converges to true tree as number of
sites increases toward infinity)

... even when you're in the “Felsenstein Zone”

A C

(Felsenstein, 1978)
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Why do models matter (continued)?

« Parsimony is inconsistent in the Felsenstein zone
(and other scenarios)

» Likelihood is consistent in any “zone” (when certain
requirements are met)

But this guarantee requires that the
model be specified correctly!

Likelihood can also be inconsistent if the
model is oversimplified

* Real data always evolve according to processes
more complex than any computationally feasible
model would permit, so we have to choose “good”
rather than “correct” models



What is a “good” model?

Parsimony in statistics represents a tradeoff between bias
and variance as a function of the dimension of the model. A
good model is a balance between under- and over-fitting.
(Burnham and Anderson, 1998)
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What is a “good” model?

Parsimony in statistics represents a tradeoff between bias
and variance as a function of the dimension of the model. A
good model is a balance between under- and over-fitting.
(Burnham and Anderson, 1998)
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What is a “good” model?

Parsimony in statistics represents a tradeoff between bias
and variance as a function of the dimension of the model. A
good model is a balance between under- and over-fitting.
(Burnham and Anderson, 1998)
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Why models don't have to be perfect

Assertion: In most situations, phylogenetic inference is relatively
robust to model misspecification, as long as critical factors
influencing sequence evolution are accommodated

Caveat: There are some kinds of model misspecification that
are very difficult to overcome (e.g., “heterotachy”)

E.q.:
I A C A C

B D B D

Half of sites Other half

Likelihood can be consistent in Felsenstein zone, but will be
inconsistent if a single set of branch lengths are assumed when
there are actually two sets of branch lengths (Chang 1996)
(“heterotachy”)



GTR Family of Reversible DNA Substitution Models

(general time-reversible)

GTR
3 substitution types
(transversions, 2 transition classes) Equal base frequencies
(Tamura-Nei) TrN SYM
2 substitution types 3 substitution types

(transitions vs. (transitions,

transversions) 2 transversion classes)
(Hasegawa-Kishir?o-Yano) HKY85 K3ST (Kimura 3-subst. type)

(Felsenstein) F84 Equal base

frequencies 2 substitution types

Single substitution type (transitions vs. transversions)

(Felsenstein) F 81 K2P (Kimura 2-parameter)

Equal base frequencies Single substitution type

JC

Jukes-Cantor



Among site rate heterogeneity

Lemur AAGCTTCATAG
Homo AAGCTTCACCG
Pan AAGCTTCACCG
Goril AAGCTTCACCG
Pongo AAGCTTCACCG
Hylo AAGCTTTACAG
Maca AAGCTTTTCCG

TTGCATCATCCA ..
..I'TACATCCTCAT

TTGCATCATCCA

TTACGCCATCCA ..
TTACGCCATCCA ..
TTACGCCATCCT ..
..IGCAACCGTCCT
..CGCAACCATCCT

TTACATTATCCG
TTACATTATCCG

Proportion of invariable sites
— Some sites extremely unlikely to change due to strong functional or structural

constraint (Hasegawa et al., 1985)

« Gamma-distributed rates

— Rate variation assumed to follow a gamma distribution with shape parameter a

Site-specific rates (another way to model ASRYV)

TTACATCATCCA

TTACATCCTCAT
CCCACGGACTTA
GCAACCACCCTC

— Different relative rates assumed for pre-assigned subsets of sites
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Performance of ML when its model is violated

Tree a = 0.5, pinv=0.5 o = 1.0, pinv=0.5 o = 1.0, pinv=0.2
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Likelihood ratio tests

e (Calculate "delta" statistic

d=2(In L - In Ly

If model 0 is nested within model 1, d is distributed

as X2 with degrees-of-freedom equal to the
difference in number of free parameters
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Model selection criteria

« Akaike information criterion (AIC)
AIC. =-2InL +2k

where k is the number of free parameters estimated

* AICc (corrected AlIC)

(2k(k+1))

AIC. = AIC
; k=1

« Bayesian information criterion (BIC)

BIC,=-2InL. +kInn

where k is the number of free parameters estimated and
n is the “sample size” (typically number of sites)



AIC vs. BIC

BIC performs well when true model is contained in model set,
and among a set of simple models, AIC often selects a more
complex model than the truth (indeed, AIC is formally
statistically inconsistent)

But in phylogenetics, no model is as complex as the truth, and the
true model will never be contained in the model set.

BIC often chooses models that seem foo simple, however.



Partitioned Models

Many authors have emphasized the importance of
modeling heterogeneity among genes or other subsets
of the data appropriately

“...data partitioning is more an art
than a science, and it should rely on
our knowledge of the biological
system...”

Yang and Rannala (2012; Nature Rev. Genet. 13:303-314)




Ways to partition based on
biological criteria

By gene
By codon
By gene/codon combination

Stems vs. loops (probably not advisable—
e.g., Simon et al., 2006)

Coding vs. noncoding



Naive partitioning

® Run ModelTest/JModelTest; estimate
a model (from the GTR+I+G family)
separately for each gene/subset

® Perform an ML/Bayesian analysis,
assigning the chosen models to each
gene (with unlinked parameters)

Too many parameters! 1-10
parameters for each gene; amount
of data available to estimate each

parameter does not increase



Over-Partitioning

Consider the following (contrived) example:
® Gene A: HKY+G, t = (0.26, 0.24, 0.23, 0.27), k=1.1, a=3.0

® GeneB:GTR, m=(0.25,0.24,0.25,0.26), (a,b,c,d,e)=(1.1,
1.2,0.9, 1.1, 0.95)

® Gene C:JC+l (pinv=0.05)

These are all GTR models that are not far from the
Jukes-Cantor model, but they all have different
names

Better to estimate one GTR model (even with 5+3+1+1=10 parameters,
estimated from all data) than 3 separate models with 2+5+1=8 parameters
(but only one gene’s worth of data for each model)



How to find optimal partitionings?

Consider a data
set with 3 genes,
A, B, and C:

J0be
@00

@ B O

For each partitioning scheme, evaluate some set of
models from the GTR+I+G (e.g., 56 models) according to
AIC or BIC

Choose a combination of partitioning scheme and model
for subsequent partitioned-model analyses

Rob Lanfear’s PartitionFinder (http://www.robertlanfear.com/partitionfinder/)
automates this process; method now also available in PAUP* test versions



http://www.robertlanfear.com/partitionfinder/

How many partitionings?

Bell number

2

In general, the 5
number of 15
partitionings on n 52
subsets is a “Bell 203
number” 877

4 x |08
9.8 x 1059

Obviously, there are too many
partitioning schemes to evaluate them
all for more than a few subsets.



Greedy algorithm when there are too many
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1+ n(n2-1)/6 =11 schemes ¢
. A B C D
For 1265 genes, there would still be Lanfear, R., Caloott, B., Ho, S. Y. W., &
Guindon, S. (2012). Partitionfinder:
337,380,561 schemes to evaluate! combined selection of partitioning

schemes and substitution models for
phylogenetic analyses. Molecular
Biology and Evolution, 29(6), 1695—
1701



How to partition thousands of genes (or other
subsets)?

Cluster analysis

e Li, Lu, and Orti (2008)
Estimate model parameters on a shared model; similar subsets
will have similar parameter estimates and will cluster together.

Problem? Similar models (in the sense of predicting similar site pattern
frequencies), can have different parameter MLEs. Must use same model
for all subsets.

e Frandsen et al. (2015); Lanfear et al. (2016): PartitionFinder2)

Hierarchical (or non-hierarchical k-means) clustering using
same idea as Li et al. (very efficient implementation)



