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What is a (statistical) model?

Daniel L. Hartl, 2000:

A model is an intentional simplification of a complex
situation designed to eliminate extraneous detail in order
to focus attention on the essentials of the situation.

Wikipedia 27 May 2022:

A statistical model is a mathematical model that
embodies a set of statistical assumptions concerning the
generation of sample data (and similar data from a larger
population). A statistical model represents, often in
considerably idealized form, the data-generating process.


https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Statistical_assumptions
https://en.wikipedia.org/wiki/Sample_(statistics)
https://en.wikipedia.org/wiki/Statistical_population

Jordan Peterson

Jordan Bernt Peterson is a Canadian clinical psychologist,
YouTube personality, author, and a professor emeritus at the
University of Toronto. Peterson began to receive widespread
attention as a public intellectual in the late 2010s for his views

on cultural and political issues, often described as conservative.
Wikipedia

Peterson on models (with Joe Rogan)


https://en.wikipedia.org/wiki/Jordan_Peterson

Which is more useful?
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Models don’t need to reflect reality

"The most that can be expected from any model is that it
can supply a useful approximation to reality: All models are
wrong; some models are useful”. (George E. P. Box, 1987)

Model selection is a process of seeking the least
inadequate model from a predefined set, all of which may
be grossly inadequate as a representation of reality. (J. J.
Welch, 2006)



Why do models matter?

Model-based methods including ML and Bayesian inference
(typically) make a consistent estimate of the phylogeny
(estimate converges to true tree as number of sites increases
toward infinity)

... even when you're in the “Felsenstein Zone”

A C

(Felsenstein, 1978)
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Why do models matter (continued)?

« Parsimony is inconsistent in the Felsenstein zone
(and other scenarios)

» Likelihood is consistent in any “zone” (when certain
requirements are met)

But this guarantee requires that the
model be specified correctly!

Likelihood can also be inconsistent if the
model is oversimplified

« Real data always evolve according to processes
more complex than any computationally feasible
model would permit, so we have to choose “good”
rather than “correct” models



What is a “good” model?

The Trump administration’s “cubic model”
of coronavirus deaths, explained

An extremely foolish way to forecast the pandemic.

Parsimony in statistics e oo e o e e
represents a tradeoff f oW D e

between bias and variance
as a function of the
dimension of the model. A
good model is a balance
between under- and over-
fitting. (Burnham and
Anderson, 1998)

Chairman of the Council of Economic Advisers Kevin Hassett with reporters outside the White House on May
3,2019. | Chip Somodevilla/Getty Images

https://www.vox.com/2020/5/8/21250641/kevin-hassett-cubic-model-smoothing


https://www.vox.com/2020/5/8/21250641/kevin-hassett-cubic-model-smoothing

Using curve fitting to predict COVID-19 deaths

United States Daily COVID-19 Deaths: Actual Data, IHME/UW Model
Projections, & Cubic Fit.
Updated today (5/5/20), data through yesterday (5/4/20).

== o|HME Projection (3/27) == o|HME Projection (4/5) == o|HME Projection (5/4) = oCubic Fit amm/\ctual

Deaths per day
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Sources: Institute for Health Metrics and Evaluation (IHME); New York Times; CEA calculations.
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http://freerangestats.info/blog/2020/04/06/crazy-fox-y-axis
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Number of new COVID-19 cases per day ())

Quadratic model
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Number of new COVID-19 cases per day (y)

Cubic model
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Number of new COVID-19 cases per day (y)

7th order polynomial
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Why models don't have to be perfect

Assertion: In most situations, phylogenetic inference is relatively
robust to model misspecification, as long as critical factors
influencing sequence evolution are accommodated

Caveat: There are some kinds of model misspecification that
are very difficult to overcome (e.g., “heterotachy”)

E.q.:
9 A C A c

B D B D

Half of sites Other half

Likelihood can be consistent in Felsenstein zone, but will be
inconsistent if a single set of branch lengths are assumed when
there are actually two sets of branch lengths (Chang 1996)
(“heterotachy”)



GTR Family of Reversible DNA Substitution Models

(general time-reversible)

GTR
3 substitution types
(transversions, 2 transition classes) Equal base frequencies
(Tamura-Nei) TrN SYM
2 substitution types 3 substitution types

(transitions vs. (transitions,

transversions) 2 transversion classes)
(Hasegawa-Kishir.w-Yano) HKY85 K3ST (Kimura 3-subst. type)

(Felsenstein) F84 Equal base

frequencies 2 substitution types

Single substitution type (transitions vs. transversions)

(Felsenstein) F81 K2P (Kimura 2-parameter)

Equal base frequencies Single substitution type

JC

Jukes-Cantor



Modeling among-site rate

heterogeneity

AAGCTTCATAG
AAGCTTCACCG
AAGCTTCACCG
AAGCTTCACCG
AAGCTTCACCG
AAGCTTTACAG
AAGCTTTTCCG

Lemur
Homo
Pan
Goril
Pongo
Hylo
Maca

TTGCATCATCCA

TTGCATCATCCA ..
TTACGCCATCCA ..
..CCCACGGACTTA
..GCAACCACCCTC
..ITGCAACCGTCCT

TTACGCCATCCA
TTACGCCATCCT
TTACATTATCCG

TTACATTATCCG ..

Proportion of invariable sites

— Some sites extremely unlikely to change due to strong functional or structural

constraint (Hasegawa et al., 1985)

Gamma-distributed rates

— Rate variation assumed to follow a gamma distribution with shape parameter a

..I'TACATCATCCA

TTACATCCTCAT
TTACATCCTCAT

CGCAACCATCCT

Site-specific rates (another way to model ASRV)



Modeling ASRV with gamma distribution
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Performance of ML when its model is violated

Syst. Biol. 50(5):723-729, 2001

Should We Use Model-Based Methods for Phylogenetic Inference
When We Know That Assumptions About Among-Site Rate Variation
and Nucleotide Substitution Pattern Are Violated?

JACK SULLIVAN! AND DAVID L. SWOFFORD?

"Department of Biological Sciences, Box 443051, University of Idaho, Moscow, Idaho 83844-3051, USA;
E-mail: jacks@uidaho.edu
2Laboratory of Molecular Systematics, Smithsonian Museum Support Center, 4210 Silver Hill Rd., Suitland,
Maryland 27460, USA; E-mail: swofford@Ims.si.edu

Generating model:
GTR substitution model: Three rate heterogeneity conditions:

ma = 0.30 rac = 5.0
c = 0.25 raGg = 10.0
G = 0.15 YAT = 3.0
mr = 0.30 rcc = 1.0 “Weak”: pim,=0.2, a=1
rer = 15.0
rgr = 1.0

“Extreme”: p;,,=0.5, @=0.5

“Strong”: pin,=0.5, a=1



Performance of ML when its model is violated

Generating model:

GTR substitution model:

ma = 0.30 rac = 5.0
nc =0.25 rac = 10.0
nc =0.15 rar = 3.0
T = 0.30 reg = 1.0
rer = 15.0
rgr = 1.0

Three rate heterogeneity conditions:

Three different rate-heterogeneity condi-

tions were simulated: extreme (pinv = 0.5,
a=().5), strong (pinv = 0.5,2 =1 0), and

(a)

weak =(.2,a=



Performance of ML when its model is violated

Tree a = 0.5, pinv=0.5 a = 1.0, pinv=0.5 a = 1.0, pinv=0.2
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Likelihood ratio tests

 (Calculate "delta" statistic

d=2(In L -In Ly

If model O (simpler) is nested within model 1
(more complex), 6 is asymptotically distributed
as a x2 random variable with degrees-of-freedom
equal to the difference in number of free
parameters.*

*An additional adjustment is needed when parameters of the
simpler model are at a boundary of the parameter space for the
more complex model, but we won’t worry about that here
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Density
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Model selection criteria

» Akaike information criterion (AIC)

AIC. =-2InL, +2k

where k is the number of free parameters estimated

e AlCc (corrected AIC)

(2k(k+1))

AIC. = AIC
; T k=1

e Bayesian information criterion (BIC)

BIC,=-2InL, +kInn

where k is the number of free parameters estimated and n is
the “sample size” (typically number of sites)



Parsimony-like ML models

Bulletin of Mathematical Biology, Vol. 59, No. 3, pp. 581-607, 1997
Elsevier Science Inc.

© 1997 Society for Mathematical Biology

0092-8240,/97 $17.00 + 0.00

S0092-8240(97)00001-3

LINKS BETWEEN MAXIMUM LIKELIHOOD
AND MAXIMUM PARSIMONY UNDER A
SIMPLE MODEL OF SITE SUBSTITUTION

m CHRIS TUFFLEY and MIKE STEEL
Biomathematics Research Centre,
Department of Mathematics and Statistics,
University of Canterbury,

Christchurch, New Zealand

(E.mail: m.steel@math.canterbury.ac.nz)

6.1. Equivalence of maximum parsimony and maximum likelihood with no
common mechanism. Theorem 1 may be used to demonstrate the equiva-
lence of the inference methods of maximum parsimony and maximum
likelihood with no common mechanism under the fully symmetric model.
By “no common mechanism,” we mean that we may choose a different
vector of mutation probabilities for each character, rather than requiring
all of them to evolve according to a single vector of mutation probabilities,
as is usually the case. This approach has the drawback that it is not
necessarily statistically consistent; see below.



Parsimony-like ML models

But using the Tuffley-Steel model does not justify use of parsimony, as it can
be formally proven that none of the standard model selection criteria (e.g., AlC,
BIC) will ever prefer the no-common-mechanism model!

Syst. Biol. 59(4):477-485, 2010
(© The Author(s) 2010. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved.

For Permissions, please email: journals.permissions@oxfordjournals.org
DOI:10.1093/sysbio/syq028
Advance Access publication on May 31, 2010

The Akaike Information Criterion Will Not Choose the No Common Mechanism Model

MARK T. HOLDER!*, PAUL O. LEWIS?, AND DAVID L. SWOFFORD>*

1 Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA; *Department of Ecology
and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Unit 3043, Storrs, CT 06269-3043, USA; 3Institute for Genome Sciences
and Policy Center for Evolutionary Genomics, Duke University, Durham, NC 27708, USA; and 4National Evolutionary Synthesis Center, 2024 W. Main

Street, Durham, NC 27705, USA;

*Correspondence to be sent to: Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045,
USA; E-mail: mtholder@ku.edu.

Received 12 May 2009; reviews returned 6 July 2009; accepted 21 January 2010
Associate Editor: Olivier Gascuel



AIC(c) vs. BIC

BIC performs well when true model is contained in model
set, and among a set of simple-ish models, AlIC often
selects a more complex model than the truth (indeed, AIC
is formally statistically inconsistent)

But in phylogenetics, no model is as complex as the truth,
and the true model will never be contained in the model

set.

BIC often chooses models that seem too simple!.

Opinion: Studies that evaluate the performance of
model selection criteria based on their ability to
choose the “true” model from a set of competing
models are fundamentally flawed.



Partitioned Models

Many authors have emphasized the importance of
modeling heterogeneity among genes or other subsets
of the data appropriately

“...data partitioning is more an art
than a science, and it should rely on
our knowledge of the biological
system...”

Yang and Rannala (2012; Nature Rev. Genet. 13:303-314)




Ways to partition based on
biological criteria

By gene
By codon
By gene/codon combination

Stems vs. loops (probably not advisable—
e.g., Simon et al., 2006)

Coding vs. noncoding



Naive partitioning

® Run ModelTest/JModelTest; estimate
a model (from the GTR+I+G family)
separately for each gene/subset

® Perform an ML/Bayesian analysis,
assigning the chosen models to each
gene (with unlinked parameters)

Too many parameters! 1-10
parameters for each gene; amount
of data available to estimate each

parameter does not increase



Over-Partitioning
Consider the following (contrived) example:
® Gene A: HKY+G, mt = (0.26, 0.24, 0.23, 0.27), k=1.1, 0=3.0

® GeneB:GTR, m=(0.25,0.24,0.25,0.26), (a,b,c,d,e)=(1.1,
1.2,0.9, 1.1, 0.95)

® Gene C: JC+l (pinv=0.05)

These are all GTR models that are not far from the
Jukes-Cantor model, but they all have different
names

Better to estimate one GTR model (even with 5+3+1+1=10 parameters,
estimated from all data) than 3 separate models with 2+5+1=8 parameters
(but only one gene’s worth of data for each model)



How to find optimal partitionings?

Consider a data
set with 3 genes,
A, B, and C:

o>
@

o0P@®O00

=
vs)

For each partitioning scheme, evaluate some set of
models from the GTR+I+G (e.g., 56 models) according to
AIC or BIC

Choose a combination of partitioning scheme and model
for subsequent partitioned-model analyses

Rob Lanfear’s PartitionFinder (http://www.robertlanfear.com/partitionfinder/)
automates this process; method now also available in PAUP*



http://www.robertlanfear.com/partitionfinder/

How many partitionings?

N Bell number
2 2
In general, the 3 5
number of 4 15
partitionings on n 5 52
subsets is a “Bell 6 203
number” 7 877
) 4 x 106
60 9.8 x 1059

Obviously, there are too many
partitioning schemes to evaluate them
all for more than a few subsets.



Greedy algorithm when there are too many
partiionings

@@@@

-©© -@C
@ O0®D @ED®O

ED® O -@@
/

@B OO0 l @ 0@ D
GBECD®

1+ n(n2-1)/6 =11 schemes ¢
@A B C D
For 1265 genes, there would still be Lanfear, R., Calcott, B, Ho, . Y. W., &
Guindon, S. (2012). Partitionfinder:
33 7, 380’561 Schemes to eva/uate! combined selection of partitioning

schemes and substitution models for
phylogenetic analyses. Molecular
Biology and Evolution, 29(6), 1695—
1701



How to partition thousands of genes (or other subsets)?

Cluster analysis

e Li, Lu, and Orti (2008)
Estimate model parameters on a shared model; similar subsets
will have similar parameter estimates and will cluster together.

Problem? Similar models (in the sense of predicting similar site pattern
frequencies), can have different parameter MLEs. Must use same model
for all subsets.

e Frandsen et al. (2015); Lanfear et al. (2016): PartitionFinder2)

Hierarchical (or non-hierarchical k-means) clustering using
same idea as Li et al. (very efficient implementation)



Is model selection really needed?

Abadi et al. (2019, Nature Communications):

ARTICLE

Model selection may not be a mandatory step for
phylogeny reconstruction

Shiran Abadi® ', Dana Azouri?, Tal Pupko? & Itay Mayrose® '

Determining the most suitable model for phylogeny reconstruction constitutes a fundamental
step in numerous evolutionary studies. Over the years, various criteria for model selection
have been proposed, leading to debate over which criterion is preferable. However, the
necessity of this procedure has not been questioned to date. Here, we demonstrate that
although incongruency regarding the selected model is frequent over empirical and simulated
data, all criteria lead to very similar inferences. When topologies and ancestral sequence
reconstruction are the desired output, choosing one criterion over another is not crucial.
Moreover, skipping model selection and using instead the most parameter-rich model, GTR-+I
+G, leads to similar inferences, thus rendering this time-consuming step nonessential, at

least under current strategies of model selection.



Should model selection be abandoned?

Michael Gerth

Why we should not abandon model selection in

phylogeny reconstruction
31/3/2019 7 Comments

A recent paper in Nature Communications (Abadi et al. 2019) investigated model selection
in phylogeny reconstruction. Selecting an appropriate model of nucleotide substitution is
considered best practice in phylogenetics, and indeed many studies have show that
accurate modelling of substitution processes can substantially improve phylogenetic
estimates. The authors quite surprisingly find that this practice may not be necessary
after all. From multiple datasets of diverse simulated sequences, they find that the models
chosen by commonly used criteria do not perform better than the most complex model.
They conclude that cases model selection can be skipped altogether, and all phylogenetic
inferences be performed with a complex model.

https://www.michaelgerth.net/news--blog/why-we-should-not-abandon-model-selection-in-phylogeny-reconstruction



ModelTeller: Model Selection for Optimal Phylogenetic
Reconstruction Using Machine Learning

Shiran Abadi ®," Oren Avram,” Saharon Rosset,® Tal Pupko,” and Itay Mayrose*"

'School of Plant Sciences and Food security, Tel-Aviv University, Tel-Aviv, Israel
*School of Molecular Cell Biology & Biotechnology, Tel-Aviv University, Tel-Aviv, Israel
3Department of Statistics and Operations Research, School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv, Israel

*Corresponding author: E-mail: itaymay@tauex.tau.ac.il.
Associate editor: Li Liu

Abstract

Statistical criteria have long been the standard for selecting the best model for phylogenetic reconstruction and down-
stream statistical inference. Although model selection is regarded as a fundamental step in phylogenetics, existing
methods for this task consume computational resources for long processing time, they are not always feasible, and
sometimes depend on preliminary assumptions which do not hold for sequence data. Moreover, although these methods
are dedicated to revealing the processes that underlie the sequence data, they do not always produce the most accurate
trees. Notably, phylogeny reconstruction consists of two related tasks, topology reconstruction and branch-length esti-
mation. It was previously shown that in many cases the most complex model, GTR+I+G, leads to topologies that are as
accurate as using existing model selection criteria, but overestimates branch lengths. Here, we present ModelTeller, a
computational methodology for phylogenetic model selection, devised within the machine-learning framework, opti-
mized to predict the most accurate nucleotide substitution model for branch-length estimation. We demonstrate that
ModelTeller leads to more accurate branch-length inference than current model selection criteria on data sets simulated
under realistic processes. ModelTeller relies on a readily implemented machine-learning model and thus the prediction
according to features extracted from the sequence data results in a substantial decrease in running time compared with
existing strategies. By harnessing the machine-learning framework, we distinguish between features that mostly con-
tribute to branch-length optimization, concerning the extent of sequence divergence, and features that are related to
estimates of the model parameters that are important for the selection made by current criteria.

Key words: model selection, phylogenetic reconstruction, simulations, nucleotide substitution models, machine learn-
ing, Random Forest for regression.

Abadi et al. (2020, MBE)



