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What	is	a	(sta8s8cal)	model?

Daniel	L.	Hartl,	2000:	

A	model	is	an	inten8onal	simplifica8on	of	a	complex	

situa8on	designed	to	eliminate	extraneous	detail	in	order	

to	focus	aGen8on	on	the	essen8als	of	the	situa8on.		

Wikipedia	27	May	2022:	
	

A	sta)s)cal	model	is	a	mathema8cal	model	that	

embodies	a	set	of	sta8s8cal	assump8ons	concerning	the	

genera8on	of	sample	data	(and	similar	data	from	a	larger	

popula8on).	A	sta8s8cal	model	represents,	oKen	in	

considerably	idealized	form,	the	data-genera8ng	process.

https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Statistical_assumptions
https://en.wikipedia.org/wiki/Sample_(statistics)
https://en.wikipedia.org/wiki/Statistical_population


Jordan Peterson
Jordan	Bernt	Peterson	is	a	Canadian	clinical	psychologist,	

YouTube	personality,	author,	and	a	professor	emeritus	at	the	

University	of	Toronto.	Peterson	began	to	receive	widespread	

aGen8on	as	a	public	intellectual	in	the	late	2010s	for	his	views	

on	cultural	and	poli8cal	issues,	oKen	described	as	conserva8ve.	

Wikipedia

Peterson on models (with Joe Rogan)

https://en.wikipedia.org/wiki/Jordan_Peterson


Which	is	more	useful?

“Reality” Detailed	map

Detailed	public	transporta8on Simplified	metro

Concept credit: Paul Lewis



Models	don’t	need	to	reflect	reality

"The	most	that	can	be	expected	from	any	model	is	that	it	

can	supply	a	useful	approxima8on	to	reality:	All	models	are	
wrong;	some	models	are	useful".		(George	E.	P.	Box,	1987)	

Model	selec8on	is	a	process	of	seeking	the	least	

inadequate	model	from	a	predefined	set,	all	of	which	may	

be	grossly	inadequate	as	a	representa8on	of	reality.		(J.	J.	

Welch,	2006)



Why do models matter?
Model-based methods including ML and Bayesian inference 
(typically) make a consistent estimate of the phylogeny 
(estimate converges to true tree as number of sites increases 
toward infinity) 

A C

B D

(Felsenstein, 1978)

... even when you’re in the “Felsenstein Zone”



In the Felsenstein Zone

Sequence Length
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Why do models matter (continued)?

• Parsimony is inconsistent in the Felsenstein zone 
(and other scenarios) 

• Likelihood is consistent in any “zone” (when certain 
requirements are met)

But this guarantee requires that the 
model be specified correctly! 
 
Likelihood can also be inconsistent if the 
model is oversimplified

• Real data always evolve according to processes 
more complex than any computationally feasible 
model would permit, so we have to choose “good” 
rather than “correct” models



Parsimony	in	sta<s<cs	
represents	a	tradeoff	
between	bias	and	variance	
as	a	func<on	of	the	
dimension	of	the	model.		A	
good	model	is	a	balance	
between	under-	and	over-
fiIng.	(Burnham	and	
Anderson,	1998)

What is a “good” model?

https://www.vox.com/2020/5/8/21250641/kevin-hassett-cubic-model-smoothing

https://www.vox.com/2020/5/8/21250641/kevin-hassett-cubic-model-smoothing


Using	curve	fieng	to	predict	COVID-19	deaths



From "free range statistics" blog

“It’s so bad it’s funny. This is clearly 
incompetence not malevolence. But it’s a 
serious degree of incompetence.”

(Peter Ellis)

http://freerangestats.info/blog/2020/04/06/crazy-fox-y-axis


y = 37.85 + 24.6786x R2 = 0.8809
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Simple	linear	regression



y = 20.2471 + 32.803x − 0.580317x2 R2 = 0.8880
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Quadra8c	model



Cubic	model

y = 35.5395 + 16.8943x + 2.36055x2 − 0.140041x3 R2 = 0.8938
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7th	order	polynomial

y = 35.1896 − 62.242x + 130.394x2 − 65.0475x3 + 14.5492x4 −
1.60818x5 + 0.086021x6 − 0.00177926x7

R2 = 0.9476
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`

y = 210.6 + 412.951x − 37.273x2 − 33.5173x3 + 37.6492x4 +
69.596x5 − 12.4264x6 − 63.2143x7 − 16.3268x8 + 31.902x9 +

37.2156x10 + 19.0374x11 − 6.25138x12 + 32.7926x13 +
77.4358x14

R2 = 1.000

0

100

200

300

400

500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Days since March 18 2020 (x)

N
um

be
ro
fn
ew

C
O
VI
D
−1
9
ca
se
s
pe
rd
ay

(y
)



Assertion: In most situations, phylogenetic inference is relatively 
robust to model misspecification, as long as critical factors 
influencing sequence evolution are accommodated 

Caveat: There are some kinds of model misspecification that 
are very difficult to overcome (e.g., “heterotachy”)

A

B

C

D

A

B

C

D

Half of sites Other half

Likelihood can be consistent in Felsenstein zone, but will be 
inconsistent if a single set of branch lengths are assumed when 
there are actually two sets of branch lengths (Chang 1996) 
(“heterotachy”)

E.g.:

Why models don't have to be perfect



GTR Family of Reversible DNA Substitution Models
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Modeling	among-site	rate	

heterogeneity

• Propor8on	of	invariable	sites	

– Some	sites	extremely	unlikely	to	change	due	to	strong	func8onal	or	structural	

constraint	(Hasegawa	et	al.,	1985)	

• Gamma-distributed	rates	

– Rate	varia8on	assumed	to	follow	a	gamma	distribu8on	with	shape	parameter	α	

• Site-specific	rates	(another	way	to	model	ASRV)	

Lemur AAGCTTCATAG TTGCATCATCCA …TTACATCATCCA 
Homo  AAGCTTCACCG TTGCATCATCCA …TTACATCCTCAT 
Pan   AAGCTTCACCG TTACGCCATCCA …TTACATCCTCAT 
Goril AAGCTTCACCG TTACGCCATCCA …CCCACGGACTTA 
Pongo AAGCTTCACCG TTACGCCATCCT …GCAACCACCCTC 
Hylo  AAGCTTTACAG TTACATTATCCG …TGCAACCGTCCT 
Maca  AAGCTTTTCCG TTACATTATCCG …CGCAACCATCCT



Modeling	ASRV	with	gamma	distribu8on	

…can also include a proportion of “invariable” sites (pinv)
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Performance	of	ML	when	its	model	is	violated	

Genera8ng	model:

GTR	subs8tu8on	model: Three	rate	heterogeneity	condi8ons:

“Extreme”:	pinv=0.5,	𝛼=0.5	
“Strong”:	pinv=0.5,	𝛼=1	
		“Weak”:	pinv=0.2,	𝛼=1



Performance	of	ML	when	its	model	is	violated	
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“MODERATE”–Felsenstein zone

α = 1.0, pinv=0.5
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“MODERATE”–Inverse-
Felsenstein zone

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 1000 10000 100000

JCer
JC+G
JC+I
JC+I+G
GTRer
GTR+G
GTR+I
GTR+I+G
parsimony



• Calculate	"delta"	sta8s8c

If	model	0	(simpler)	is	nested	within	model	1	

(more	complex),	δ	is	asympto8cally	distributed	

as	a	𝛘2	random	variable	with	degrees-of-freedom	

equal	to	the	difference	in	number	of	free	

parameters.*

δ = 2(ln L1 - ln L0)

Likelihood	ra8o	tests

𝚓

*An	addi<onal	adjustment	is	needed	when	parameters	of	the	
simpler	model	are	at	a	boundary	of	the	parameter	space	for	the	
more	complex	model,	but	we	won’t	worry	about	that	here



JC	vs	K80	models

Histogram	of	δ	=	2(ln	L0	-	ln	L1)
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𝛘2
6.64

0.05 and 0.01 critical values

JC vs K80 models

Histogram of δ = 2(ln L0 - ln L1)

3.84



Model	selec8on	criteria

• AICc	(corrected	AIC) 
 
 

Figure. Dynamical likelihood ratio tests for 24 models. At any level a hypothesis is either accepted (A)
or rejected (R). In this example the model selected is GTR+I. Hypotheses tested are: F = base frequencies; S =
substitution type; I = proportion of invariable sites; G = gamma rates.

7.5 Information Criteria

7.5.1 Akaike Information Criterion

The Akaike information criterion (AIC, [Akaike, 1974] is an asymptotically unbiased estimator of the Kullback-
Leibler information quantity [S. Kullback, 1951]. We can think of the AIC as the amount of information lost
when we use a specific model to approximate the real process of molecular evolution. Therefore, the model
with the smallest AIC is preferred. The AIC is computed as:

AIC =�2l +2k

where l is the maximum log-likelihood value of the data under this model and Ki is the number of free
parameters in the model, including branch lengths if they were estimated de novo. When sample size (n) is
small compared to the number of parameters (say, n

K < 40) the use of a second order AIC, AICc [Hurvich and
Tsai, 1989; Sugiura, 1978], is recommended:

AICc = AIC+
(2k(k+1))
(n� k�1)

The AIC compares several candidate models simultaneously, it can be used to compare both nested and
non-nested models, and model-selection uncertainty can be easily quantified using the AIC differences and
Akaike weights (see Model uncertainty below). Burnham and Anderson [2003] provide an excellent introduc-
tion to the AIC and model selection in general.

7.5.2 Bayesian Information Criterion

An alternative to the use of the AIC is the Bayesian Information Criterion (BIC) [Schwarz, 1978]:

BIC =�2l + klog(n)

Given equal priors for all competing models, choosing the model with the smallest BIC is equivalent to
selecting the model with the maximum posterior probability. Alternatively, Bayes factors for models of molec-
ular evolution can be calculated using reversible jump MCMC [Huelsenbeck et al., 2004]. We can easily use the
BIC instead of the AIC to calculate BIC differences or BIC weights.

7.5.3 Performance Based Selection

Minin et al. [2003] developed a novel approach that selects models on the basis of their phylogenetic perfor-
mance, measured as the expected error on branch lengths estimates weighted by their BIC. Under this decision
theoretic framework (DT) the best model is the one with that minimizes the risk function:

Ci ⇡
n

Â
j=1

||B̂i � B̂ j||
e
�BICj

2

ÂR
j=1(e

�BICi
2 )

where

||B̂i � B̂ j||2 =
2t�3

Â
l=1

(B̂il � B̂ jl)
2

and where t is the number of taxa. Indeed, simulations suggested that models selected with this criterion
result in slightly more accurate branch length estimates than those obtained under models selected by the
hLRTs [Abdo et al., 2005; Minin et al., 2003].

25

• Akaike	informa8on	criterion	(AIC)

AICi = −2 lnLi +2k
where k is the number of free parameters estimated

• Bayesian	informa8on	criterion	(BIC)

BICi = −2 lnLi + k lnn

where	k	is	the	number	of	free	parameters	es8mated	and	n	is	
the	“sample	size”	(typically	number	of	sites)



Parsimony-like	ML	models



Parsimony-like	ML	models

But using the Tuffley-Steel model does not justify use of parsimony, as it can 
be formally proven that none of the standard model selection criteria (e.g., AIC, 
BIC) will ever prefer the no-common-mechanism model!



AIC(c)	vs.	BIC

– BIC	performs	well	when	true	model	is	contained	in	model	

set,	and	among	a	set	of	simple-ish	models,	AIC	oKen	

selects	a	more	complex	model	than	the	truth	(indeed,	AIC	

is	formally	sta8s8cally	inconsistent)	

– But	in	phylogene8cs,	no	model	is	as	complex	as	the	truth,	

and	the	true	model	will	never	be	contained	in	the	model	

set.	

– BIC	oKen	chooses	models	that	seem	too	simple!.

Opinion:	Studies	that	evaluate	the	performance	of	
model	selec<on	criteria	based	on	their	ability	to	
choose	the	“true”	model	from	a	set	of	compe<ng	
models	are	fundamentally	flawed.



Par88oned	Models

“...data	par88oning	is	more	an	art	

than	a	science,	and	it	should	rely	on	

our	knowledge	of	the	biological	

system...”	

Yang	and	Rannala	(2012;	Nature	Rev.	Genet.	13:303-314)

Many	authors	have	emphasized	the	importance	of	

modeling	heterogeneity	among	genes	or	other	subsets	

of	the	data	appropriately		



Ways	to	par88on	based	on	

biological	criteria

• By	gene	

• By	codon	

• By	gene/codon	combina8on	

• Stems	vs.	loops	(probably	not	advisable—

e.g.,	Simon	et	al.,	2006)	

• Coding	vs.	noncoding



Naive	par88oning

• Run	ModelTest/JModelTest;	es8mate	

a	model	(from	the	GTR+I+G	family)	

separately	for	each	gene/subset	

• Perform	an	ML/Bayesian	analysis,	

assigning	the	chosen	models	to	each	

gene	(with	unlinked	parameters)

Too	many	parameters!		1-10	

parameters	for	each	gene;	amount	

of	data	available	to	es8mate	each	

parameter	does	not	increase



Over-Par88oning

Consider	the	following	(contrived)	example:	

• Gene	A:	HKY+G,	π	=	(0.26,	0.24,	0.23,	0.27),	𝜅=1.1,	α=3.0	
• Gene	B:	GTR,	π	=	(0.25,0.24,0.25,0.26),	(a,b,c,d,e)=(1.1,	

1.2,	0.9,	1.1,	0.95)	

• Gene	C:	JC+I	(pinv=0.05)

These	are	all	GTR	models	that	are	not	far	from	the	

Jukes-Cantor	model,	but	they	all	have	different	

names

BeGer	to	es8mate	one	GTR	model	(even	with	5+3+1+1=10	parameters,	

es8mated	from	all	data)	than	3	separate	models	with	2+5+1=8	parameters	

(but	only	one	gene’s	worth	of	data	for	each	model)



How	to	find	op8mal	par88onings?

Consider	a	data	

set	with	3	genes,	

A,	B,	and	C: BA C

BA C

CA B

CB A

BA C

For	each	par88oning	scheme,	evaluate	some	set	of	

models	from	the	GTR+I+G	(e.g.,	56	models)	according	to	

AIC	or	BIC	

Choose	a	combina8on	of	par88oning	scheme	and	model	

for	subsequent	par88oned-model	analyses

Rob	Lanfear’s	Par))onFinder	(hGp://www.robertlanfear.com/par88onfinder/)	

automates	this	process;	method	now	also	available	in	PAUP*

http://www.robertlanfear.com/partitionfinder/


How	many	par88onings?

In	general,	the	

number	of	

par88onings	on	n	
subsets	is	a	“Bell	

number”

N Bell number

2 2

3 5

4 15

5 52

6 203

7 877

12 4 x 106

60 9.8 x 1059

Obviously,	there	are	too	many	

par88oning	schemes	to	evaluate	them	

all	for	more	than	a	few	subsets.



Greedy	algorithm	when	there	are	too	many	

par88onings

BA C D

BA C D

CA B D

DA B D

DC A B

DB A C

CB A D

BA C D CB A D

CB D A

BA C D

1	+	n(n2	-	1)/6	=	11	schemes

For	1265	genes,	there	would	s<ll	be	
337,380,561	schemes	to	evaluate!

Lanfear, R., Calcott, B., Ho, S. Y. W., & 
Guindon, S. (2012). Partitionfinder: 
combined selection of partitioning 
schemes and substitution models for 
phylogenetic analyses. Molecular 
Biology and Evolution, 29(6), 1695–
1701

×
×

×
×
×

× ×



How	to	par88on	thousands	of	genes	(or	other	subsets)?

•	Li,	Lu,	and	Or8	(2008)	

Es8mate	model	parameters	on	a	shared	model;	similar	subsets	

will	have	similar	parameter	es8mates	and	will	cluster	together.	

Problem?		Similar	models	(in	the	sense	of	predic<ng	similar	site	pacern	
frequencies),	can	have	different	parameter	MLEs.		Must	use	same	model	
for	all	subsets.	

Cluster	analysis

•	Frandsen	et	al.	(2015);	Lanfear	et	al.	(2016):	Par88onFinder2)	

Hierarchical	(or	non-hierarchical	k-means)	clustering	using	

same	idea	as	Li	et	al.	(very	efficient	implementa8on)	
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Model selection may not be a mandatory step for
phylogeny reconstruction
Shiran Abadi 1, Dana Azouri1,2, Tal Pupko2 & Itay Mayrose 1

Determining the most suitable model for phylogeny reconstruction constitutes a fundamental

step in numerous evolutionary studies. Over the years, various criteria for model selection

have been proposed, leading to debate over which criterion is preferable. However, the

necessity of this procedure has not been questioned to date. Here, we demonstrate that

although incongruency regarding the selected model is frequent over empirical and simulated

data, all criteria lead to very similar inferences. When topologies and ancestral sequence

reconstruction are the desired output, choosing one criterion over another is not crucial.

Moreover, skipping model selection and using instead the most parameter-rich model, GTR+I

+G, leads to similar inferences, thus rendering this time-consuming step nonessential, at

least under current strategies of model selection.
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Is	model	selec8on	really	needed?

Abadi	et	al.	(2019,	Nature	Communica<ons):



Should	model	selec8on	be	abandoned?

https://www.michaelgerth.net/news--blog/why-we-should-not-abandon-model-selection-in-phylogeny-reconstruction

Michael Gerth



ModelTeller: Model Selection for Optimal Phylogenetic
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Abstract

Statistical criteria have long been the standard for selecting the best model for phylogenetic reconstruction and down-
stream statistical inference. Although model selection is regarded as a fundamental step in phylogenetics, existing
methods for this task consume computational resources for long processing time, they are not always feasible, and
sometimes depend on preliminary assumptions which do not hold for sequence data. Moreover, although these methods
are dedicated to revealing the processes that underlie the sequence data, they do not always produce the most accurate
trees. Notably, phylogeny reconstruction consists of two related tasks, topology reconstruction and branch-length esti-
mation. It was previously shown that in many cases the most complex model, GTRþIþG, leads to topologies that are as
accurate as using existing model selection criteria, but overestimates branch lengths. Here, we present ModelTeller, a
computational methodology for phylogenetic model selection, devised within the machine-learning framework, opti-
mized to predict the most accurate nucleotide substitution model for branch-length estimation. We demonstrate that
ModelTeller leads to more accurate branch-length inference than current model selection criteria on data sets simulated
under realistic processes. ModelTeller relies on a readily implemented machine-learning model and thus the prediction
according to features extracted from the sequence data results in a substantial decrease in running time compared with
existing strategies. By harnessing the machine-learning framework, we distinguish between features that mostly con-
tribute to branch-length optimization, concerning the extent of sequence divergence, and features that are related to
estimates of the model parameters that are important for the selection made by current criteria.
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Introduction
The abundance of substitution models (Jukes and Cantor
1969; Kimura 1980; Felsenstein 1981; Cowan 1984;
Hasegawa et al. 1985; Tamura 1992; Tamura and Nei 1993;
Schöniger and Von Haeseler 1994; Zharkikh 1994;
Huelsenbeck and Crandall 1997) and the need to choose
one (or few) has established model selection as a prerequisite
for phylogeny reconstruction (Goldman 1993a; Huelsenbeck
and Rannala 1997; Sullivan and Swofford 1997, 2001; Posada
and Crandall 2001; Pupko et al. 2002). This is evident by the
wide use of model selection as an inherent component of
phylogenetic analysis. For example, the most widely used
method, MODELTEST (Posada and Crandall 1998), was in-
cluded in the 100 all-time top-cited papers by Web of Science
(Van Noorden et al. 2014). However, although criteria for
phylogenetic model selection have been adapted from the
general statistical literature, they rely on assumptions that do
not hold for phylogenetic data analysis (Posada and Buckley
2004). For example, the likelihood ratio test (LRT) for

comparing between a pair of nested models, as approximated
using the chi-square distribution, has been expanded to the
comparison of multiple models via the hierarchical likelihood
ratio test (hLRT) criterion, which performs a sequence of LRTs
between pairs of nested substitution models, until a model
that cannot be rejected is reached. However, LRTs assume
that at least one of the compared models is adequate and
might be incorrect when the models are misspecified (Foutz
and Srivastava 1977; Kent 1982; Golden 1995). Obviously, no
substitution model can fully capture the genuine complexity
of the evolutionary process, such that even the most ade-
quate one merely provides an approximation of reality (Box
1976), therefore posing model misspecifications that may bias
the results of LRTs in phylogenetics (Zhang 1999).
Furthermore, it has been shown that the choices determined
by the hLRT are influenced by the order of pairwise tests and
the significance threshold used to reject the simpler model in
each paired comparison (Yang et al. 1995; Ripplinger and
Sullivan 2008). Other information criteria compute the
maximum-likelihood scores for all the candidate models
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